![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dff2 | Structured version Visualization version GIF version |
Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.) |
Ref | Expression |
---|---|
dff2 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6723 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fssxp 6751 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
3 | 1, 2 | jca 510 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
4 | rnss 5941 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
5 | rnxpss 6178 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
6 | 4, 5 | sstrdi 3989 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
7 | 6 | anim2i 615 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
8 | df-f 6553 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
9 | 7, 8 | sylibr 233 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:𝐴⟶𝐵) |
10 | 3, 9 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ⊆ wss 3944 × cxp 5676 ran crn 5679 Fn wfn 6544 ⟶wf 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-fun 6551 df-fn 6552 df-f 6553 |
This theorem is referenced by: fpr2g 7223 mapval2 8891 cardf2 9968 mpoaddf 11234 mpomulf 11235 imasaddflem 17515 imasvscaf 17524 gsumpart 32859 |
Copyright terms: Public domain | W3C validator |