MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff2 Structured version   Visualization version   GIF version

Theorem dff2 6957
Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
Assertion
Ref Expression
dff2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))

Proof of Theorem dff2
StepHypRef Expression
1 ffn 6584 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fssxp 6612 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
31, 2jca 511 . 2 (𝐹:𝐴𝐵 → (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))
4 rnss 5837 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
5 rnxpss 6064 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
64, 5sstrdi 3929 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
76anim2i 616 . . 3 ((𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
8 df-f 6422 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
97, 8sylibr 233 . 2 ((𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:𝐴𝐵)
103, 9impbii 208 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wss 3883   × cxp 5578  ran crn 5581   Fn wfn 6413  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  fpr2g  7069  mapval2  8618  cardf2  9632  imasaddflem  17158  imasvscaf  17167  gsumpart  31217
  Copyright terms: Public domain W3C validator