MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff2 Structured version   Visualization version   GIF version

Theorem dff2 7041
Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
Assertion
Ref Expression
dff2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))

Proof of Theorem dff2
StepHypRef Expression
1 ffn 6659 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fssxp 6686 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
31, 2jca 511 . 2 (𝐹:𝐴𝐵 → (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))
4 rnss 5885 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
5 rnxpss 6127 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
64, 5sstrdi 3943 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
76anim2i 617 . . 3 ((𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
8 df-f 6493 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
97, 8sylibr 234 . 2 ((𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:𝐴𝐵)
103, 9impbii 209 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wss 3898   × cxp 5619  ran crn 5622   Fn wfn 6484  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by:  fpr2g  7154  mapval2  8806  cardf2  9847  mpoaddf  11111  mpomulf  11112  imasaddflem  17442  imasvscaf  17451  gsumpart  33074
  Copyright terms: Public domain W3C validator