| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0cli | Structured version Visualization version GIF version | ||
| Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| f0cl.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| f0cl.2 | ⊢ ∅ ∈ 𝐵 |
| Ref | Expression |
|---|---|
| f0cli | ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0cl.1 | . . 3 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | 1 | ffvelcdmi 7057 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 3 | 1 | fdmi 6701 | . . . 4 ⊢ dom 𝐹 = 𝐴 |
| 4 | 3 | eleq2i 2821 | . . 3 ⊢ (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴) |
| 5 | ndmfv 6895 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
| 6 | f0cl.2 | . . . 4 ⊢ ∅ ∈ 𝐵 | |
| 7 | 5, 6 | eqeltrdi 2837 | . . 3 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) ∈ 𝐵) |
| 8 | 4, 7 | sylnbir 331 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 9 | 2, 8 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4298 dom cdm 5640 ⟶wf 6509 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 |
| This theorem is referenced by: harcl 9518 cantnfvalf 9624 rankon 9754 cardon 9903 alephon 10028 ackbij1lem13 10190 ackbij1b 10197 ixxssxr 13324 sadcf 16429 smupf 16454 iccordt 23107 nodense 27610 bdayelon 27694 madessno 27774 oldssno 27775 newssno 27776 |
| Copyright terms: Public domain | W3C validator |