MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0cli Structured version   Visualization version   GIF version

Theorem f0cli 7032
Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
Hypotheses
Ref Expression
f0cl.1 𝐹:𝐴𝐵
f0cl.2 ∅ ∈ 𝐵
Assertion
Ref Expression
f0cli (𝐹𝐶) ∈ 𝐵

Proof of Theorem f0cli
StepHypRef Expression
1 f0cl.1 . . 3 𝐹:𝐴𝐵
21ffvelcdmi 7017 . 2 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
31fdmi 6663 . . . 4 dom 𝐹 = 𝐴
43eleq2i 2820 . . 3 (𝐶 ∈ dom 𝐹𝐶𝐴)
5 ndmfv 6855 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
6 f0cl.2 . . . 4 ∅ ∈ 𝐵
75, 6eqeltrdi 2836 . . 3 𝐶 ∈ dom 𝐹 → (𝐹𝐶) ∈ 𝐵)
84, 7sylnbir 331 . 2 𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
92, 8pm2.61i 182 1 (𝐹𝐶) ∈ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  c0 4284  dom cdm 5619  wf 6478  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490
This theorem is referenced by:  harcl  9451  cantnfvalf  9561  rankon  9691  cardon  9840  alephon  9963  ackbij1lem13  10125  ackbij1b  10132  ixxssxr  13260  sadcf  16364  smupf  16389  iccordt  23099  nodense  27602  bdayelon  27686  madessno  27770  oldssno  27771  newssno  27772
  Copyright terms: Public domain W3C validator