Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f0cli | Structured version Visualization version GIF version |
Description: Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
Ref | Expression |
---|---|
f0cl.1 | ⊢ 𝐹:𝐴⟶𝐵 |
f0cl.2 | ⊢ ∅ ∈ 𝐵 |
Ref | Expression |
---|---|
f0cli | ⊢ (𝐹‘𝐶) ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0cl.1 | . . 3 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | 1 | ffvelrni 6942 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
3 | 1 | fdmi 6596 | . . . 4 ⊢ dom 𝐹 = 𝐴 |
4 | 3 | eleq2i 2830 | . . 3 ⊢ (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴) |
5 | ndmfv 6786 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
6 | f0cl.2 | . . . 4 ⊢ ∅ ∈ 𝐵 | |
7 | 5, 6 | eqeltrdi 2847 | . . 3 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) ∈ 𝐵) |
8 | 4, 7 | sylnbir 330 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
9 | 2, 8 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∅c0 4253 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: harcl 9248 cantnfvalf 9353 rankon 9484 cardon 9633 alephon 9756 ackbij1lem13 9919 ackbij1b 9926 ixxssxr 13020 sadcf 16088 smupf 16113 iccordt 22273 nodense 33822 bdayelon 33898 madessno 33971 oldssno 33972 newssno 33973 |
Copyright terms: Public domain | W3C validator |