| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0cli | Structured version Visualization version GIF version | ||
| Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| f0cl.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| f0cl.2 | ⊢ ∅ ∈ 𝐵 |
| Ref | Expression |
|---|---|
| f0cli | ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0cl.1 | . . 3 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | 1 | ffvelcdmi 7083 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 3 | 1 | fdmi 6727 | . . . 4 ⊢ dom 𝐹 = 𝐴 |
| 4 | 3 | eleq2i 2825 | . . 3 ⊢ (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴) |
| 5 | ndmfv 6921 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
| 6 | f0cl.2 | . . . 4 ⊢ ∅ ∈ 𝐵 | |
| 7 | 5, 6 | eqeltrdi 2841 | . . 3 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) ∈ 𝐵) |
| 8 | 4, 7 | sylnbir 331 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 9 | 2, 8 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2107 ∅c0 4313 dom cdm 5665 ⟶wf 6537 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 |
| This theorem is referenced by: harcl 9581 cantnfvalf 9687 rankon 9817 cardon 9966 alephon 10091 ackbij1lem13 10253 ackbij1b 10260 ixxssxr 13381 sadcf 16472 smupf 16497 iccordt 23168 nodense 27673 bdayelon 27757 madessno 27835 oldssno 27836 newssno 27837 |
| Copyright terms: Public domain | W3C validator |