| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0cli | Structured version Visualization version GIF version | ||
| Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| f0cl.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| f0cl.2 | ⊢ ∅ ∈ 𝐵 |
| Ref | Expression |
|---|---|
| f0cli | ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0cl.1 | . . 3 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | 1 | ffvelcdmi 7016 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 3 | 1 | fdmi 6662 | . . . 4 ⊢ dom 𝐹 = 𝐴 |
| 4 | 3 | eleq2i 2823 | . . 3 ⊢ (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴) |
| 5 | ndmfv 6854 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
| 6 | f0cl.2 | . . . 4 ⊢ ∅ ∈ 𝐵 | |
| 7 | 5, 6 | eqeltrdi 2839 | . . 3 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) ∈ 𝐵) |
| 8 | 4, 7 | sylnbir 331 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 9 | 2, 8 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ∅c0 4280 dom cdm 5614 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: harcl 9445 cantnfvalf 9555 rankon 9688 cardon 9837 alephon 9960 ackbij1lem13 10122 ackbij1b 10129 ixxssxr 13257 sadcf 16364 smupf 16389 iccordt 23129 nodense 27631 bdayelon 27715 madessno 27801 oldssno 27802 newssno 27803 |
| Copyright terms: Public domain | W3C validator |