Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0cli Structured version   Visualization version   GIF version

Theorem f0cli 6846
 Description: Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
Hypotheses
Ref Expression
f0cl.1 𝐹:𝐴𝐵
f0cl.2 ∅ ∈ 𝐵
Assertion
Ref Expression
f0cli (𝐹𝐶) ∈ 𝐵

Proof of Theorem f0cli
StepHypRef Expression
1 f0cl.1 . . 3 𝐹:𝐴𝐵
21ffvelrni 6832 . 2 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
31fdmi 6505 . . . 4 dom 𝐹 = 𝐴
43eleq2i 2905 . . 3 (𝐶 ∈ dom 𝐹𝐶𝐴)
5 ndmfv 6682 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
6 f0cl.2 . . . 4 ∅ ∈ 𝐵
75, 6eqeltrdi 2922 . . 3 𝐶 ∈ dom 𝐹 → (𝐹𝐶) ∈ 𝐵)
84, 7sylnbir 334 . 2 𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
92, 8pm2.61i 185 1 (𝐹𝐶) ∈ 𝐵
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∈ wcel 2114  ∅c0 4265  dom cdm 5532  ⟶wf 6330  ‘cfv 6334 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-fv 6342 This theorem is referenced by:  harcl  9011  cantnfvalf  9116  rankon  9212  cardon  9361  alephon  9484  ackbij1lem13  9643  ackbij1b  9650  ixxssxr  12738  sadcf  15791  smupf  15816  iccordt  21817  nodense  33270  bdayelon  33320
 Copyright terms: Public domain W3C validator