Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f0cli | Structured version Visualization version GIF version |
Description: Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
Ref | Expression |
---|---|
f0cl.1 | ⊢ 𝐹:𝐴⟶𝐵 |
f0cl.2 | ⊢ ∅ ∈ 𝐵 |
Ref | Expression |
---|---|
f0cli | ⊢ (𝐹‘𝐶) ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0cl.1 | . . 3 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | 1 | ffvelrni 6957 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
3 | 1 | fdmi 6610 | . . . 4 ⊢ dom 𝐹 = 𝐴 |
4 | 3 | eleq2i 2832 | . . 3 ⊢ (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴) |
5 | ndmfv 6801 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
6 | f0cl.2 | . . . 4 ⊢ ∅ ∈ 𝐵 | |
7 | 5, 6 | eqeltrdi 2849 | . . 3 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) ∈ 𝐵) |
8 | 4, 7 | sylnbir 331 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
9 | 2, 8 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2110 ∅c0 4262 dom cdm 5590 ⟶wf 6428 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 |
This theorem is referenced by: harcl 9306 cantnfvalf 9411 rankon 9564 cardon 9713 alephon 9836 ackbij1lem13 9999 ackbij1b 10006 ixxssxr 13102 sadcf 16171 smupf 16196 iccordt 22376 nodense 33904 bdayelon 33980 madessno 34053 oldssno 34054 newssno 34055 |
Copyright terms: Public domain | W3C validator |