MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0cli Structured version   Visualization version   GIF version

Theorem f0cli 7098
Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
Hypotheses
Ref Expression
f0cl.1 𝐹:𝐴𝐵
f0cl.2 ∅ ∈ 𝐵
Assertion
Ref Expression
f0cli (𝐹𝐶) ∈ 𝐵

Proof of Theorem f0cli
StepHypRef Expression
1 f0cl.1 . . 3 𝐹:𝐴𝐵
21ffvelcdmi 7083 . 2 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
31fdmi 6727 . . . 4 dom 𝐹 = 𝐴
43eleq2i 2825 . . 3 (𝐶 ∈ dom 𝐹𝐶𝐴)
5 ndmfv 6921 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
6 f0cl.2 . . . 4 ∅ ∈ 𝐵
75, 6eqeltrdi 2841 . . 3 𝐶 ∈ dom 𝐹 → (𝐹𝐶) ∈ 𝐵)
84, 7sylnbir 331 . 2 𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
92, 8pm2.61i 182 1 (𝐹𝐶) ∈ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2107  c0 4313  dom cdm 5665  wf 6537  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549
This theorem is referenced by:  harcl  9581  cantnfvalf  9687  rankon  9817  cardon  9966  alephon  10091  ackbij1lem13  10253  ackbij1b  10260  ixxssxr  13381  sadcf  16472  smupf  16497  iccordt  23168  nodense  27673  bdayelon  27757  madessno  27835  oldssno  27836  newssno  27837
  Copyright terms: Public domain W3C validator