| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0cli | Structured version Visualization version GIF version | ||
| Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| f0cl.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| f0cl.2 | ⊢ ∅ ∈ 𝐵 |
| Ref | Expression |
|---|---|
| f0cli | ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0cl.1 | . . 3 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | 1 | ffvelcdmi 7037 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 3 | 1 | fdmi 6681 | . . . 4 ⊢ dom 𝐹 = 𝐴 |
| 4 | 3 | eleq2i 2820 | . . 3 ⊢ (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴) |
| 5 | ndmfv 6875 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
| 6 | f0cl.2 | . . . 4 ⊢ ∅ ∈ 𝐵 | |
| 7 | 5, 6 | eqeltrdi 2836 | . . 3 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) ∈ 𝐵) |
| 8 | 4, 7 | sylnbir 331 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 9 | 2, 8 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4292 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 |
| This theorem is referenced by: harcl 9488 cantnfvalf 9594 rankon 9724 cardon 9873 alephon 9998 ackbij1lem13 10160 ackbij1b 10167 ixxssxr 13294 sadcf 16399 smupf 16424 iccordt 23134 nodense 27637 bdayelon 27721 madessno 27805 oldssno 27806 newssno 27807 |
| Copyright terms: Public domain | W3C validator |