| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0cli | Structured version Visualization version GIF version | ||
| Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| f0cl.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| f0cl.2 | ⊢ ∅ ∈ 𝐵 |
| Ref | Expression |
|---|---|
| f0cli | ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0cl.1 | . . 3 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | 1 | ffvelcdmi 7017 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 3 | 1 | fdmi 6663 | . . . 4 ⊢ dom 𝐹 = 𝐴 |
| 4 | 3 | eleq2i 2820 | . . 3 ⊢ (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴) |
| 5 | ndmfv 6855 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
| 6 | f0cl.2 | . . . 4 ⊢ ∅ ∈ 𝐵 | |
| 7 | 5, 6 | eqeltrdi 2836 | . . 3 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) ∈ 𝐵) |
| 8 | 4, 7 | sylnbir 331 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
| 9 | 2, 8 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4284 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 |
| This theorem is referenced by: harcl 9451 cantnfvalf 9561 rankon 9691 cardon 9840 alephon 9963 ackbij1lem13 10125 ackbij1b 10132 ixxssxr 13260 sadcf 16364 smupf 16389 iccordt 23099 nodense 27602 bdayelon 27686 madessno 27770 oldssno 27771 newssno 27772 |
| Copyright terms: Public domain | W3C validator |