![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0cli | Structured version Visualization version GIF version |
Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
Ref | Expression |
---|---|
f0cl.1 | ⊢ 𝐹:𝐴⟶𝐵 |
f0cl.2 | ⊢ ∅ ∈ 𝐵 |
Ref | Expression |
---|---|
f0cli | ⊢ (𝐹‘𝐶) ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0cl.1 | . . 3 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | 1 | ffvelcdmi 7110 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
3 | 1 | fdmi 6755 | . . . 4 ⊢ dom 𝐹 = 𝐴 |
4 | 3 | eleq2i 2833 | . . 3 ⊢ (𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴) |
5 | ndmfv 6949 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
6 | f0cl.2 | . . . 4 ⊢ ∅ ∈ 𝐵 | |
7 | 5, 6 | eqeltrdi 2849 | . . 3 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) ∈ 𝐵) |
8 | 4, 7 | sylnbir 331 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) |
9 | 2, 8 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∅c0 4342 dom cdm 5693 ⟶wf 6565 ‘cfv 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 |
This theorem is referenced by: harcl 9606 cantnfvalf 9712 rankon 9842 cardon 9991 alephon 10116 ackbij1lem13 10278 ackbij1b 10285 ixxssxr 13405 sadcf 16496 smupf 16521 iccordt 23247 nodense 27763 bdayelon 27847 madessno 27925 oldssno 27926 newssno 27927 |
Copyright terms: Public domain | W3C validator |