MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr2g Structured version   Visualization version   GIF version

Theorem fpr2g 7145
Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
fpr2g ((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))

Proof of Theorem fpr2g
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹:{𝐴, 𝐵}⟶𝐶)
2 prid1g 4713 . . . . 5 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
32ad2antrr 726 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐴 ∈ {𝐴, 𝐵})
41, 3ffvelcdmd 7018 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹𝐴) ∈ 𝐶)
5 prid2g 4714 . . . . 5 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
65ad2antlr 727 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐵 ∈ {𝐴, 𝐵})
71, 6ffvelcdmd 7018 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹𝐵) ∈ 𝐶)
8 ffn 6651 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝐶𝐹 Fn {𝐴, 𝐵})
98adantl 481 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 Fn {𝐴, 𝐵})
10 fnpr2g 7144 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1110adantr 480 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
129, 11mpbid 232 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
134, 7, 123jca 1128 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1410biimpar 477 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}) → 𝐹 Fn {𝐴, 𝐵})
15143ad2antr3 1191 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 Fn {𝐴, 𝐵})
16 simpr3 1197 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
172ad2antrr 726 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐴 ∈ {𝐴, 𝐵})
18 simpr1 1195 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (𝐹𝐴) ∈ 𝐶)
1917, 18opelxpd 5655 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → ⟨𝐴, (𝐹𝐴)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
205ad2antlr 727 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐵 ∈ {𝐴, 𝐵})
21 simpr2 1196 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (𝐹𝐵) ∈ 𝐶)
2220, 21opelxpd 5655 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → ⟨𝐵, (𝐹𝐵)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
2319, 22prssd 4774 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ⊆ ({𝐴, 𝐵} × 𝐶))
2416, 23eqsstrd 3969 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶))
25 dff2 7032 . . 3 (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ (𝐹 Fn {𝐴, 𝐵} ∧ 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶)))
2615, 24, 25sylanbrc 583 . 2 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹:{𝐴, 𝐵}⟶𝐶)
2713, 26impbida 800 1 ((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3902  {cpr 4578  cop 4582   × cxp 5614   Fn wfn 6476  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  f1prex  7218  uhgrwkspthlem2  29730  rrx2xpref1o  48749
  Copyright terms: Public domain W3C validator