Proof of Theorem fpr2g
Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹:{𝐴, 𝐵}⟶𝐶) |
2 | | prid1g 4652 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
3 | 2 | ad2antrr 726 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐴 ∈ {𝐴, 𝐵}) |
4 | 1, 3 | ffvelrnd 6865 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹‘𝐴) ∈ 𝐶) |
5 | | prid2g 4653 |
. . . . 5
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) |
6 | 5 | ad2antlr 727 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐵 ∈ {𝐴, 𝐵}) |
7 | 1, 6 | ffvelrnd 6865 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹‘𝐵) ∈ 𝐶) |
8 | | ffn 6505 |
. . . . 5
⊢ (𝐹:{𝐴, 𝐵}⟶𝐶 → 𝐹 Fn {𝐴, 𝐵}) |
9 | 8 | adantl 485 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 Fn {𝐴, 𝐵}) |
10 | | fnpr2g 6986 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
11 | 10 | adantr 484 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
12 | 9, 11 | mpbid 235 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) |
13 | 4, 7, 12 | 3jca 1129 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
14 | 10 | biimpar 481 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) → 𝐹 Fn {𝐴, 𝐵}) |
15 | 14 | 3ad2antr3 1191 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → 𝐹 Fn {𝐴, 𝐵}) |
16 | | simpr3 1197 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) |
17 | 2 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → 𝐴 ∈ {𝐴, 𝐵}) |
18 | | simpr1 1195 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → (𝐹‘𝐴) ∈ 𝐶) |
19 | 17, 18 | opelxpd 5564 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → 〈𝐴, (𝐹‘𝐴)〉 ∈ ({𝐴, 𝐵} × 𝐶)) |
20 | 5 | ad2antlr 727 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → 𝐵 ∈ {𝐴, 𝐵}) |
21 | | simpr2 1196 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → (𝐹‘𝐵) ∈ 𝐶) |
22 | 20, 21 | opelxpd 5564 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → 〈𝐵, (𝐹‘𝐵)〉 ∈ ({𝐴, 𝐵} × 𝐶)) |
23 | 19, 22 | prssd 4711 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉} ⊆ ({𝐴, 𝐵} × 𝐶)) |
24 | 16, 23 | eqsstrd 3916 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶)) |
25 | | dff2 6878 |
. . 3
⊢ (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ (𝐹 Fn {𝐴, 𝐵} ∧ 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶))) |
26 | 15, 24, 25 | sylanbrc 586 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) → 𝐹:{𝐴, 𝐵}⟶𝐶) |
27 | 13, 26 | impbida 801 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}))) |