MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr2g Structured version   Visualization version   GIF version

Theorem fpr2g 6951
Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
fpr2g ((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))

Proof of Theorem fpr2g
StepHypRef Expression
1 simpr 488 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹:{𝐴, 𝐵}⟶𝐶)
2 prid1g 4656 . . . . 5 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
32ad2antrr 725 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐴 ∈ {𝐴, 𝐵})
41, 3ffvelrnd 6829 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹𝐴) ∈ 𝐶)
5 prid2g 4657 . . . . 5 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
65ad2antlr 726 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐵 ∈ {𝐴, 𝐵})
71, 6ffvelrnd 6829 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹𝐵) ∈ 𝐶)
8 ffn 6487 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝐶𝐹 Fn {𝐴, 𝐵})
98adantl 485 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 Fn {𝐴, 𝐵})
10 fnpr2g 6950 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1110adantr 484 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
129, 11mpbid 235 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
134, 7, 123jca 1125 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1410biimpar 481 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}) → 𝐹 Fn {𝐴, 𝐵})
15143ad2antr3 1187 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 Fn {𝐴, 𝐵})
16 simpr3 1193 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
172ad2antrr 725 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐴 ∈ {𝐴, 𝐵})
18 simpr1 1191 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (𝐹𝐴) ∈ 𝐶)
1917, 18opelxpd 5557 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → ⟨𝐴, (𝐹𝐴)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
205ad2antlr 726 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐵 ∈ {𝐴, 𝐵})
21 simpr2 1192 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (𝐹𝐵) ∈ 𝐶)
2220, 21opelxpd 5557 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → ⟨𝐵, (𝐹𝐵)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
2319, 22prssd 4715 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ⊆ ({𝐴, 𝐵} × 𝐶))
2416, 23eqsstrd 3953 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶))
25 dff2 6842 . . 3 (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ (𝐹 Fn {𝐴, 𝐵} ∧ 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶)))
2615, 24, 25sylanbrc 586 . 2 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹:{𝐴, 𝐵}⟶𝐶)
2713, 26impbida 800 1 ((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881  {cpr 4527  cop 4531   × cxp 5517   Fn wfn 6319  wf 6320  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332
This theorem is referenced by:  f1prex  7018  uhgrwkspthlem2  27543  rrx2xpref1o  45132
  Copyright terms: Public domain W3C validator