| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapval2 | Structured version Visualization version GIF version | ||
| Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.) |
| Ref | Expression |
|---|---|
| elmap.1 | ⊢ 𝐴 ∈ V |
| elmap.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mapval2 | ⊢ (𝐴 ↑m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff2 7071 | . . . 4 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 Fn 𝐵 ∧ 𝑔 ⊆ (𝐵 × 𝐴))) | |
| 2 | 1 | biancomi 462 | . . 3 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 3 | elmap.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | elmap.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | elmap 8844 | . . 3 ⊢ (𝑔 ∈ (𝐴 ↑m 𝐵) ↔ 𝑔:𝐵⟶𝐴) |
| 6 | elin 3930 | . . . 4 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵})) | |
| 7 | velpw 4568 | . . . . 5 ⊢ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴)) | |
| 8 | vex 3451 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 9 | fneq1 6609 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐵 ↔ 𝑔 Fn 𝐵)) | |
| 10 | 8, 9 | elab 3646 | . . . . 5 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵) |
| 11 | 7, 10 | anbi12i 628 | . . . 4 ⊢ ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 12 | 6, 11 | bitri 275 | . . 3 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 13 | 2, 5, 12 | 3bitr4i 303 | . 2 ⊢ (𝑔 ∈ (𝐴 ↑m 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵})) |
| 14 | 13 | eqriv 2726 | 1 ⊢ (𝐴 ↑m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 × cxp 5636 Fn wfn 6506 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |