MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapval2 Structured version   Visualization version   GIF version

Theorem mapval2 8895
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
mapval2 (𝐴m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
Distinct variable group:   𝐵,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem mapval2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dff2 7112 . . . 4 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵𝑔 ⊆ (𝐵 × 𝐴)))
21biancomi 461 . . 3 (𝑔:𝐵𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
3 elmap.1 . . . 4 𝐴 ∈ V
4 elmap.2 . . . 4 𝐵 ∈ V
53, 4elmap 8894 . . 3 (𝑔 ∈ (𝐴m 𝐵) ↔ 𝑔:𝐵𝐴)
6 elin 3963 . . . 4 (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓𝑓 Fn 𝐵}))
7 velpw 4609 . . . . 5 (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴))
8 vex 3475 . . . . . 6 𝑔 ∈ V
9 fneq1 6648 . . . . . 6 (𝑓 = 𝑔 → (𝑓 Fn 𝐵𝑔 Fn 𝐵))
108, 9elab 3667 . . . . 5 (𝑔 ∈ {𝑓𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵)
117, 10anbi12i 626 . . . 4 ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
126, 11bitri 274 . . 3 (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵))
132, 5, 123bitr4i 302 . 2 (𝑔 ∈ (𝐴m 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵}))
1413eqriv 2724 1 (𝐴m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098  {cab 2704  Vcvv 3471  cin 3946  wss 3947  𝒫 cpw 4604   × cxp 5678   Fn wfn 6546  wf 6547  (class class class)co 7424  m cmap 8849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-map 8851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator