| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapval2 | Structured version Visualization version GIF version | ||
| Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.) |
| Ref | Expression |
|---|---|
| elmap.1 | ⊢ 𝐴 ∈ V |
| elmap.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mapval2 | ⊢ (𝐴 ↑m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff2 7038 | . . . 4 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 Fn 𝐵 ∧ 𝑔 ⊆ (𝐵 × 𝐴))) | |
| 2 | 1 | biancomi 462 | . . 3 ⊢ (𝑔:𝐵⟶𝐴 ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 3 | elmap.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | elmap.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | elmap 8801 | . . 3 ⊢ (𝑔 ∈ (𝐴 ↑m 𝐵) ↔ 𝑔:𝐵⟶𝐴) |
| 6 | elin 3914 | . . . 4 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵})) | |
| 7 | velpw 4554 | . . . . 5 ⊢ (𝑔 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑔 ⊆ (𝐵 × 𝐴)) | |
| 8 | vex 3441 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 9 | fneq1 6577 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐵 ↔ 𝑔 Fn 𝐵)) | |
| 10 | 8, 9 | elab 3631 | . . . . 5 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵} ↔ 𝑔 Fn 𝐵) |
| 11 | 7, 10 | anbi12i 628 | . . . 4 ⊢ ((𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∧ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 12 | 6, 11 | bitri 275 | . . 3 ⊢ (𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) ↔ (𝑔 ⊆ (𝐵 × 𝐴) ∧ 𝑔 Fn 𝐵)) |
| 13 | 2, 5, 12 | 3bitr4i 303 | . 2 ⊢ (𝑔 ∈ (𝐴 ↑m 𝐵) ↔ 𝑔 ∈ (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵})) |
| 14 | 13 | eqriv 2730 | 1 ⊢ (𝐴 ↑m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 × cxp 5617 Fn wfn 6481 ⟶wf 6482 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |