Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem4 Structured version   Visualization version   GIF version

Theorem knoppcnlem4 36462
Description: Lemma for knoppcn 36470. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem4.n (𝜑𝑁 ∈ ℕ)
knoppcnlem4.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem4.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem4.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem4 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐶,𝑚   𝐶,𝑛,𝑦   𝑚,𝑀   𝑛,𝑀   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑚)   𝐶(𝑥)   𝑇(𝑥,𝑚)   𝐹(𝑥,𝑦,𝑚,𝑛)   𝑀(𝑦)   𝑁(𝑚)

Proof of Theorem knoppcnlem4
StepHypRef Expression
1 knoppcnlem4.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppcnlem4.2 . . . 4 (𝜑𝐴 ∈ ℝ)
3 knoppcnlem4.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
41, 2, 3knoppcnlem1 36459 . . 3 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
54fveq2d 6924 . 2 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) = (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
6 knoppcnlem4.1 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
76recnd 11318 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
87, 3expcld 14196 . . . . . 6 (𝜑 → (𝐶𝑀) ∈ ℂ)
9 knoppcnlem4.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
10 2re 12367 . . . . . . . . . . . 12 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
12 knoppcnlem4.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
13 nnre 12300 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
1511, 14remulcld 11320 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
1615, 3reexpcld 14213 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
1716, 2remulcld 11320 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ)
189, 17dnicld2 36439 . . . . . . 7 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
1918recnd 11318 . . . . . 6 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
208, 19absmuld 15503 . . . . 5 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
217, 3absexpd 15501 . . . . . 6 (𝜑 → (abs‘(𝐶𝑀)) = ((abs‘𝐶)↑𝑀))
2221oveq1d 7463 . . . . 5 (𝜑 → ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2320, 22eqtrd 2780 . . . 4 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2419abscld 15485 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
25 1red 11291 . . . . . 6 (𝜑 → 1 ∈ ℝ)
267abscld 15485 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
2726, 3reexpcld 14213 . . . . . 6 (𝜑 → ((abs‘𝐶)↑𝑀) ∈ ℝ)
287absge0d 15493 . . . . . . 7 (𝜑 → 0 ≤ (abs‘𝐶))
2926, 3, 28expge0d 14214 . . . . . 6 (𝜑 → 0 ≤ ((abs‘𝐶)↑𝑀))
309dnival 36437 . . . . . . . . . 10 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3117, 30syl 17 . . . . . . . . 9 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3231fveq2d 6924 . . . . . . . 8 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))))
33 halfre 12507 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
3433a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℝ)
3517, 34readdcld 11319 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ)
36 reflcl 13847 . . . . . . . . . . . 12 (((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3735, 36syl 17 . . . . . . . . . . 11 (𝜑 → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3837, 17resubcld 11718 . . . . . . . . . 10 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
3938recnd 11318 . . . . . . . . 9 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
40 absidm 15372 . . . . . . . . 9 (((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4139, 40syl 17 . . . . . . . 8 (𝜑 → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4232, 41eqtrd 2780 . . . . . . 7 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4331, 18eqeltrrd 2845 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
44 rddif 15389 . . . . . . . . 9 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
4517, 44syl 17 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
46 halflt1 12511 . . . . . . . . . 10 (1 / 2) < 1
47 1re 11290 . . . . . . . . . . 11 1 ∈ ℝ
4833, 47ltlei 11412 . . . . . . . . . 10 ((1 / 2) < 1 → (1 / 2) ≤ 1)
4946, 48ax-mp 5 . . . . . . . . 9 (1 / 2) ≤ 1
5049a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ≤ 1)
5143, 34, 25, 45, 50letrd 11447 . . . . . . 7 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5242, 51eqbrtrd 5188 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5324, 25, 27, 29, 52lemul2ad 12235 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ (((abs‘𝐶)↑𝑀) · 1))
54 ax-1rid 11254 . . . . . 6 (((abs‘𝐶)↑𝑀) ∈ ℝ → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5527, 54syl 17 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5653, 55breqtrd 5192 . . . 4 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
5723, 56eqbrtrd 5188 . . 3 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
58 eqidd 2741 . . . . 5 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
59 oveq2 7456 . . . . . 6 (𝑚 = 𝑀 → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6059adantl 481 . . . . 5 ((𝜑𝑚 = 𝑀) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6158, 60, 3, 27fvmptd 7036 . . . 4 (𝜑 → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀) = ((abs‘𝐶)↑𝑀))
6261eqcomd 2746 . . 3 (𝜑 → ((abs‘𝐶)↑𝑀) = ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
6357, 62breqtrd 5192 . 2 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
645, 63eqbrtrd 5188 1 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cfl 13841  cexp 14112  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  knoppcnlem6  36464
  Copyright terms: Public domain W3C validator