Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem4 Structured version   Visualization version   GIF version

Theorem knoppcnlem4 36514
Description: Lemma for knoppcn 36522. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem4.n (𝜑𝑁 ∈ ℕ)
knoppcnlem4.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem4.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem4.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem4 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐶,𝑚   𝐶,𝑛,𝑦   𝑚,𝑀   𝑛,𝑀   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑚)   𝐶(𝑥)   𝑇(𝑥,𝑚)   𝐹(𝑥,𝑦,𝑚,𝑛)   𝑀(𝑦)   𝑁(𝑚)

Proof of Theorem knoppcnlem4
StepHypRef Expression
1 knoppcnlem4.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppcnlem4.2 . . . 4 (𝜑𝐴 ∈ ℝ)
3 knoppcnlem4.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
41, 2, 3knoppcnlem1 36511 . . 3 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
54fveq2d 6880 . 2 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) = (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
6 knoppcnlem4.1 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
76recnd 11263 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
87, 3expcld 14164 . . . . . 6 (𝜑 → (𝐶𝑀) ∈ ℂ)
9 knoppcnlem4.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
10 2re 12314 . . . . . . . . . . . 12 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
12 knoppcnlem4.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
13 nnre 12247 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
1511, 14remulcld 11265 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
1615, 3reexpcld 14181 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
1716, 2remulcld 11265 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ)
189, 17dnicld2 36491 . . . . . . 7 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
1918recnd 11263 . . . . . 6 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
208, 19absmuld 15473 . . . . 5 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
217, 3absexpd 15471 . . . . . 6 (𝜑 → (abs‘(𝐶𝑀)) = ((abs‘𝐶)↑𝑀))
2221oveq1d 7420 . . . . 5 (𝜑 → ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2320, 22eqtrd 2770 . . . 4 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2419abscld 15455 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
25 1red 11236 . . . . . 6 (𝜑 → 1 ∈ ℝ)
267abscld 15455 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
2726, 3reexpcld 14181 . . . . . 6 (𝜑 → ((abs‘𝐶)↑𝑀) ∈ ℝ)
287absge0d 15463 . . . . . . 7 (𝜑 → 0 ≤ (abs‘𝐶))
2926, 3, 28expge0d 14182 . . . . . 6 (𝜑 → 0 ≤ ((abs‘𝐶)↑𝑀))
309dnival 36489 . . . . . . . . . 10 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3117, 30syl 17 . . . . . . . . 9 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3231fveq2d 6880 . . . . . . . 8 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))))
33 halfre 12454 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
3433a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℝ)
3517, 34readdcld 11264 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ)
36 reflcl 13813 . . . . . . . . . . . 12 (((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3735, 36syl 17 . . . . . . . . . . 11 (𝜑 → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3837, 17resubcld 11665 . . . . . . . . . 10 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
3938recnd 11263 . . . . . . . . 9 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
40 absidm 15342 . . . . . . . . 9 (((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4139, 40syl 17 . . . . . . . 8 (𝜑 → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4232, 41eqtrd 2770 . . . . . . 7 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4331, 18eqeltrrd 2835 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
44 rddif 15359 . . . . . . . . 9 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
4517, 44syl 17 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
46 halflt1 12458 . . . . . . . . . 10 (1 / 2) < 1
47 1re 11235 . . . . . . . . . . 11 1 ∈ ℝ
4833, 47ltlei 11357 . . . . . . . . . 10 ((1 / 2) < 1 → (1 / 2) ≤ 1)
4946, 48ax-mp 5 . . . . . . . . 9 (1 / 2) ≤ 1
5049a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ≤ 1)
5143, 34, 25, 45, 50letrd 11392 . . . . . . 7 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5242, 51eqbrtrd 5141 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5324, 25, 27, 29, 52lemul2ad 12182 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ (((abs‘𝐶)↑𝑀) · 1))
54 ax-1rid 11199 . . . . . 6 (((abs‘𝐶)↑𝑀) ∈ ℝ → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5527, 54syl 17 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5653, 55breqtrd 5145 . . . 4 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
5723, 56eqbrtrd 5141 . . 3 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
58 eqidd 2736 . . . . 5 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
59 oveq2 7413 . . . . . 6 (𝑚 = 𝑀 → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6059adantl 481 . . . . 5 ((𝜑𝑚 = 𝑀) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6158, 60, 3, 27fvmptd 6993 . . . 4 (𝜑 → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀) = ((abs‘𝐶)↑𝑀))
6261eqcomd 2741 . . 3 (𝜑 → ((abs‘𝐶)↑𝑀) = ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
6357, 62breqtrd 5145 . 2 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
645, 63eqbrtrd 5141 1 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cfl 13807  cexp 14079  abscabs 15253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by:  knoppcnlem6  36516
  Copyright terms: Public domain W3C validator