Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem4 Structured version   Visualization version   GIF version

Theorem knoppcnlem4 36478
Description: Lemma for knoppcn 36486. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem4.n (𝜑𝑁 ∈ ℕ)
knoppcnlem4.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem4.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem4.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem4 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐶,𝑚   𝐶,𝑛,𝑦   𝑚,𝑀   𝑛,𝑀   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑚)   𝐶(𝑥)   𝑇(𝑥,𝑚)   𝐹(𝑥,𝑦,𝑚,𝑛)   𝑀(𝑦)   𝑁(𝑚)

Proof of Theorem knoppcnlem4
StepHypRef Expression
1 knoppcnlem4.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppcnlem4.2 . . . 4 (𝜑𝐴 ∈ ℝ)
3 knoppcnlem4.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
41, 2, 3knoppcnlem1 36475 . . 3 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
54fveq2d 6910 . 2 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) = (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
6 knoppcnlem4.1 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
76recnd 11286 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
87, 3expcld 14182 . . . . . 6 (𝜑 → (𝐶𝑀) ∈ ℂ)
9 knoppcnlem4.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
10 2re 12337 . . . . . . . . . . . 12 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
12 knoppcnlem4.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
13 nnre 12270 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
1511, 14remulcld 11288 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
1615, 3reexpcld 14199 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
1716, 2remulcld 11288 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ)
189, 17dnicld2 36455 . . . . . . 7 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
1918recnd 11286 . . . . . 6 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
208, 19absmuld 15489 . . . . 5 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
217, 3absexpd 15487 . . . . . 6 (𝜑 → (abs‘(𝐶𝑀)) = ((abs‘𝐶)↑𝑀))
2221oveq1d 7445 . . . . 5 (𝜑 → ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2320, 22eqtrd 2774 . . . 4 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2419abscld 15471 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
25 1red 11259 . . . . . 6 (𝜑 → 1 ∈ ℝ)
267abscld 15471 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
2726, 3reexpcld 14199 . . . . . 6 (𝜑 → ((abs‘𝐶)↑𝑀) ∈ ℝ)
287absge0d 15479 . . . . . . 7 (𝜑 → 0 ≤ (abs‘𝐶))
2926, 3, 28expge0d 14200 . . . . . 6 (𝜑 → 0 ≤ ((abs‘𝐶)↑𝑀))
309dnival 36453 . . . . . . . . . 10 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3117, 30syl 17 . . . . . . . . 9 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3231fveq2d 6910 . . . . . . . 8 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))))
33 halfre 12477 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
3433a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℝ)
3517, 34readdcld 11287 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ)
36 reflcl 13832 . . . . . . . . . . . 12 (((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3735, 36syl 17 . . . . . . . . . . 11 (𝜑 → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3837, 17resubcld 11688 . . . . . . . . . 10 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
3938recnd 11286 . . . . . . . . 9 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
40 absidm 15358 . . . . . . . . 9 (((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4139, 40syl 17 . . . . . . . 8 (𝜑 → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4232, 41eqtrd 2774 . . . . . . 7 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4331, 18eqeltrrd 2839 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
44 rddif 15375 . . . . . . . . 9 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
4517, 44syl 17 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
46 halflt1 12481 . . . . . . . . . 10 (1 / 2) < 1
47 1re 11258 . . . . . . . . . . 11 1 ∈ ℝ
4833, 47ltlei 11380 . . . . . . . . . 10 ((1 / 2) < 1 → (1 / 2) ≤ 1)
4946, 48ax-mp 5 . . . . . . . . 9 (1 / 2) ≤ 1
5049a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ≤ 1)
5143, 34, 25, 45, 50letrd 11415 . . . . . . 7 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5242, 51eqbrtrd 5169 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5324, 25, 27, 29, 52lemul2ad 12205 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ (((abs‘𝐶)↑𝑀) · 1))
54 ax-1rid 11222 . . . . . 6 (((abs‘𝐶)↑𝑀) ∈ ℝ → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5527, 54syl 17 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5653, 55breqtrd 5173 . . . 4 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
5723, 56eqbrtrd 5169 . . 3 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
58 eqidd 2735 . . . . 5 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
59 oveq2 7438 . . . . . 6 (𝑚 = 𝑀 → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6059adantl 481 . . . . 5 ((𝜑𝑚 = 𝑀) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6158, 60, 3, 27fvmptd 7022 . . . 4 (𝜑 → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀) = ((abs‘𝐶)↑𝑀))
6261eqcomd 2740 . . 3 (𝜑 → ((abs‘𝐶)↑𝑀) = ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
6357, 62breqtrd 5173 . 2 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
645, 63eqbrtrd 5169 1 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cfl 13826  cexp 14098  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  knoppcnlem6  36480
  Copyright terms: Public domain W3C validator