Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem4 Structured version   Visualization version   GIF version

Theorem knoppcnlem4 36457
Description: Lemma for knoppcn 36465. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem4.n (𝜑𝑁 ∈ ℕ)
knoppcnlem4.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem4.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem4.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem4 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐶,𝑚   𝐶,𝑛,𝑦   𝑚,𝑀   𝑛,𝑀   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑚)   𝐶(𝑥)   𝑇(𝑥,𝑚)   𝐹(𝑥,𝑦,𝑚,𝑛)   𝑀(𝑦)   𝑁(𝑚)

Proof of Theorem knoppcnlem4
StepHypRef Expression
1 knoppcnlem4.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppcnlem4.2 . . . 4 (𝜑𝐴 ∈ ℝ)
3 knoppcnlem4.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
41, 2, 3knoppcnlem1 36454 . . 3 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
54fveq2d 6844 . 2 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) = (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
6 knoppcnlem4.1 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
76recnd 11178 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
87, 3expcld 14087 . . . . . 6 (𝜑 → (𝐶𝑀) ∈ ℂ)
9 knoppcnlem4.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
10 2re 12236 . . . . . . . . . . . 12 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
12 knoppcnlem4.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
13 nnre 12169 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
1511, 14remulcld 11180 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
1615, 3reexpcld 14104 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
1716, 2remulcld 11180 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ)
189, 17dnicld2 36434 . . . . . . 7 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
1918recnd 11178 . . . . . 6 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
208, 19absmuld 15399 . . . . 5 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
217, 3absexpd 15397 . . . . . 6 (𝜑 → (abs‘(𝐶𝑀)) = ((abs‘𝐶)↑𝑀))
2221oveq1d 7384 . . . . 5 (𝜑 → ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2320, 22eqtrd 2764 . . . 4 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2419abscld 15381 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
25 1red 11151 . . . . . 6 (𝜑 → 1 ∈ ℝ)
267abscld 15381 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
2726, 3reexpcld 14104 . . . . . 6 (𝜑 → ((abs‘𝐶)↑𝑀) ∈ ℝ)
287absge0d 15389 . . . . . . 7 (𝜑 → 0 ≤ (abs‘𝐶))
2926, 3, 28expge0d 14105 . . . . . 6 (𝜑 → 0 ≤ ((abs‘𝐶)↑𝑀))
309dnival 36432 . . . . . . . . . 10 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3117, 30syl 17 . . . . . . . . 9 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3231fveq2d 6844 . . . . . . . 8 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))))
33 halfre 12371 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
3433a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℝ)
3517, 34readdcld 11179 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ)
36 reflcl 13734 . . . . . . . . . . . 12 (((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3735, 36syl 17 . . . . . . . . . . 11 (𝜑 → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3837, 17resubcld 11582 . . . . . . . . . 10 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
3938recnd 11178 . . . . . . . . 9 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
40 absidm 15266 . . . . . . . . 9 (((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4139, 40syl 17 . . . . . . . 8 (𝜑 → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4232, 41eqtrd 2764 . . . . . . 7 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4331, 18eqeltrrd 2829 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
44 rddif 15283 . . . . . . . . 9 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
4517, 44syl 17 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
46 halflt1 12375 . . . . . . . . . 10 (1 / 2) < 1
47 1re 11150 . . . . . . . . . . 11 1 ∈ ℝ
4833, 47ltlei 11272 . . . . . . . . . 10 ((1 / 2) < 1 → (1 / 2) ≤ 1)
4946, 48ax-mp 5 . . . . . . . . 9 (1 / 2) ≤ 1
5049a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ≤ 1)
5143, 34, 25, 45, 50letrd 11307 . . . . . . 7 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5242, 51eqbrtrd 5124 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5324, 25, 27, 29, 52lemul2ad 12099 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ (((abs‘𝐶)↑𝑀) · 1))
54 ax-1rid 11114 . . . . . 6 (((abs‘𝐶)↑𝑀) ∈ ℝ → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5527, 54syl 17 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5653, 55breqtrd 5128 . . . 4 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
5723, 56eqbrtrd 5124 . . 3 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
58 eqidd 2730 . . . . 5 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
59 oveq2 7377 . . . . . 6 (𝑚 = 𝑀 → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6059adantl 481 . . . . 5 ((𝜑𝑚 = 𝑀) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6158, 60, 3, 27fvmptd 6957 . . . 4 (𝜑 → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀) = ((abs‘𝐶)↑𝑀))
6261eqcomd 2735 . . 3 (𝜑 → ((abs‘𝐶)↑𝑀) = ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
6357, 62breqtrd 5128 . 2 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
645, 63eqbrtrd 5124 1 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cfl 13728  cexp 14002  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  knoppcnlem6  36459
  Copyright terms: Public domain W3C validator