Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizeq0 | Structured version Visualization version GIF version |
Description: The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
Ref | Expression |
---|---|
dnizeq0.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnizeq0.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Ref | Expression |
---|---|
dnizeq0 | ⊢ (𝜑 → (𝑇‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnizeq0.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zred 12355 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | dnizeq0.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
4 | 3 | dnival 34578 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
6 | halfre 12117 | . . . . . . . . . 10 ⊢ (1 / 2) ∈ ℝ | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
8 | 1, 7 | jca 511 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ)) |
9 | flzadd 13474 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2)))) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2)))) |
11 | 6 | rexri 10964 | . . . . . . . . . . . . 13 ⊢ (1 / 2) ∈ ℝ* |
12 | 0re 10908 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
13 | halfgt0 12119 | . . . . . . . . . . . . . 14 ⊢ 0 < (1 / 2) | |
14 | 12, 6, 13 | ltleii 11028 | . . . . . . . . . . . . 13 ⊢ 0 ≤ (1 / 2) |
15 | halflt1 12121 | . . . . . . . . . . . . 13 ⊢ (1 / 2) < 1 | |
16 | 11, 14, 15 | 3pm3.2i 1337 | . . . . . . . . . . . 12 ⊢ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
17 | 0xr 10953 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ* | |
18 | 1xr 10965 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ* | |
19 | 17, 18 | pm3.2i 470 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℝ* ∧ 1 ∈ ℝ*) |
20 | elico1 13051 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1)) |
22 | 16, 21 | mpbir 230 | . . . . . . . . . . 11 ⊢ (1 / 2) ∈ (0[,)1) |
23 | 22 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (1 / 2) ∈ (0[,)1)) |
24 | ico01fl0 13467 | . . . . . . . . . 10 ⊢ ((1 / 2) ∈ (0[,)1) → (⌊‘(1 / 2)) = 0) | |
25 | 23, 24 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (⌊‘(1 / 2)) = 0) |
26 | 25 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (⌊‘(1 / 2))) = (𝐴 + 0)) |
27 | 2 | recnd 10934 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
28 | 27 | addid1d 11105 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
29 | 26, 28 | eqtrd 2778 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + (⌊‘(1 / 2))) = 𝐴) |
30 | 10, 29 | eqtrd 2778 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) = 𝐴) |
31 | 30 | oveq1d 7270 | . . . . 5 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = (𝐴 − 𝐴)) |
32 | 27 | subidd 11250 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
33 | 31, 32 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = 0) |
34 | 33 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = (abs‘0)) |
35 | abs0 14925 | . . . 4 ⊢ (abs‘0) = 0 | |
36 | 35 | a1i 11 | . . 3 ⊢ (𝜑 → (abs‘0) = 0) |
37 | 34, 36 | eqtrd 2778 | . 2 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = 0) |
38 | 5, 37 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑇‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 2c2 11958 ℤcz 12249 [,)cico 13010 ⌊cfl 13438 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: knoppndvlem6 34624 knoppndvlem8 34626 |
Copyright terms: Public domain | W3C validator |