| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizeq0 | Structured version Visualization version GIF version | ||
| Description: The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
| Ref | Expression |
|---|---|
| dnizeq0.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| dnizeq0.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| Ref | Expression |
|---|---|
| dnizeq0 | ⊢ (𝜑 → (𝑇‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnizeq0.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zred 12645 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | dnizeq0.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 4 | 3 | dnival 36466 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
| 6 | halfre 12402 | . . . . . . . . . 10 ⊢ (1 / 2) ∈ ℝ | |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 8 | 1, 7 | jca 511 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ)) |
| 9 | flzadd 13795 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2)))) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2)))) |
| 11 | 6 | rexri 11239 | . . . . . . . . . . . . 13 ⊢ (1 / 2) ∈ ℝ* |
| 12 | 0re 11183 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
| 13 | halfgt0 12404 | . . . . . . . . . . . . . 14 ⊢ 0 < (1 / 2) | |
| 14 | 12, 6, 13 | ltleii 11304 | . . . . . . . . . . . . 13 ⊢ 0 ≤ (1 / 2) |
| 15 | halflt1 12406 | . . . . . . . . . . . . 13 ⊢ (1 / 2) < 1 | |
| 16 | 11, 14, 15 | 3pm3.2i 1340 | . . . . . . . . . . . 12 ⊢ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
| 17 | 0xr 11228 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ* | |
| 18 | 1xr 11240 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ* | |
| 19 | 17, 18 | pm3.2i 470 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℝ* ∧ 1 ∈ ℝ*) |
| 20 | elico1 13356 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1)) |
| 22 | 16, 21 | mpbir 231 | . . . . . . . . . . 11 ⊢ (1 / 2) ∈ (0[,)1) |
| 23 | 22 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (1 / 2) ∈ (0[,)1)) |
| 24 | ico01fl0 13788 | . . . . . . . . . 10 ⊢ ((1 / 2) ∈ (0[,)1) → (⌊‘(1 / 2)) = 0) | |
| 25 | 23, 24 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (⌊‘(1 / 2)) = 0) |
| 26 | 25 | oveq2d 7406 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (⌊‘(1 / 2))) = (𝐴 + 0)) |
| 27 | 2 | recnd 11209 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 28 | 27 | addridd 11381 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| 29 | 26, 28 | eqtrd 2765 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + (⌊‘(1 / 2))) = 𝐴) |
| 30 | 10, 29 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) = 𝐴) |
| 31 | 30 | oveq1d 7405 | . . . . 5 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = (𝐴 − 𝐴)) |
| 32 | 27 | subidd 11528 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
| 33 | 31, 32 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = 0) |
| 34 | 33 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = (abs‘0)) |
| 35 | abs0 15258 | . . . 4 ⊢ (abs‘0) = 0 | |
| 36 | 35 | a1i 11 | . . 3 ⊢ (𝜑 → (abs‘0) = 0) |
| 37 | 34, 36 | eqtrd 2765 | . 2 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = 0) |
| 38 | 5, 37 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝑇‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 2c2 12248 ℤcz 12536 [,)cico 13315 ⌊cfl 13759 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fl 13761 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: knoppndvlem6 36512 knoppndvlem8 36514 |
| Copyright terms: Public domain | W3C validator |