Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnizeq0 Structured version   Visualization version   GIF version

Theorem dnizeq0 35983
Description: The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.)
Hypotheses
Ref Expression
dnizeq0.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnizeq0.1 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
dnizeq0 (𝜑 → (𝑇𝐴) = 0)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnizeq0
StepHypRef Expression
1 dnizeq0.1 . . . 4 (𝜑𝐴 ∈ ℤ)
21zred 12704 . . 3 (𝜑𝐴 ∈ ℝ)
3 dnizeq0.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
43dnival 35979 . . 3 (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
52, 4syl 17 . 2 (𝜑 → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
6 halfre 12464 . . . . . . . . . 10 (1 / 2) ∈ ℝ
76a1i 11 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℝ)
81, 7jca 510 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ))
9 flzadd 13831 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2))))
108, 9syl 17 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2))))
116rexri 11310 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ*
12 0re 11254 . . . . . . . . . . . . . 14 0 ∈ ℝ
13 halfgt0 12466 . . . . . . . . . . . . . 14 0 < (1 / 2)
1412, 6, 13ltleii 11375 . . . . . . . . . . . . 13 0 ≤ (1 / 2)
15 halflt1 12468 . . . . . . . . . . . . 13 (1 / 2) < 1
1611, 14, 153pm3.2i 1336 . . . . . . . . . . . 12 ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1)
17 0xr 11299 . . . . . . . . . . . . . 14 0 ∈ ℝ*
18 1xr 11311 . . . . . . . . . . . . . 14 1 ∈ ℝ*
1917, 18pm3.2i 469 . . . . . . . . . . . . 13 (0 ∈ ℝ* ∧ 1 ∈ ℝ*)
20 elico1 13407 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2119, 20ax-mp 5 . . . . . . . . . . . 12 ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1))
2216, 21mpbir 230 . . . . . . . . . . 11 (1 / 2) ∈ (0[,)1)
2322a1i 11 . . . . . . . . . 10 (𝜑 → (1 / 2) ∈ (0[,)1))
24 ico01fl0 13824 . . . . . . . . . 10 ((1 / 2) ∈ (0[,)1) → (⌊‘(1 / 2)) = 0)
2523, 24syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(1 / 2)) = 0)
2625oveq2d 7442 . . . . . . . 8 (𝜑 → (𝐴 + (⌊‘(1 / 2))) = (𝐴 + 0))
272recnd 11280 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2827addridd 11452 . . . . . . . 8 (𝜑 → (𝐴 + 0) = 𝐴)
2926, 28eqtrd 2768 . . . . . . 7 (𝜑 → (𝐴 + (⌊‘(1 / 2))) = 𝐴)
3010, 29eqtrd 2768 . . . . . 6 (𝜑 → (⌊‘(𝐴 + (1 / 2))) = 𝐴)
3130oveq1d 7441 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = (𝐴𝐴))
3227subidd 11597 . . . . 5 (𝜑 → (𝐴𝐴) = 0)
3331, 32eqtrd 2768 . . . 4 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = 0)
3433fveq2d 6906 . . 3 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = (abs‘0))
35 abs0 15272 . . . 4 (abs‘0) = 0
3635a1i 11 . . 3 (𝜑 → (abs‘0) = 0)
3734, 36eqtrd 2768 . 2 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = 0)
385, 37eqtrd 2768 1 (𝜑 → (𝑇𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5152  cmpt 5235  cfv 6553  (class class class)co 7426  cr 11145  0cc0 11146  1c1 11147   + caddc 11149  *cxr 11285   < clt 11286  cle 11287  cmin 11482   / cdiv 11909  2c2 12305  cz 12596  [,)cico 13366  cfl 13795  abscabs 15221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-ico 13370  df-fl 13797  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223
This theorem is referenced by:  knoppndvlem6  36025  knoppndvlem8  36027
  Copyright terms: Public domain W3C validator