| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizeq0 | Structured version Visualization version GIF version | ||
| Description: The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
| Ref | Expression |
|---|---|
| dnizeq0.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| dnizeq0.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| Ref | Expression |
|---|---|
| dnizeq0 | ⊢ (𝜑 → (𝑇‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnizeq0.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zred 12577 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | dnizeq0.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 4 | 3 | dnival 36513 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
| 6 | halfre 12334 | . . . . . . . . . 10 ⊢ (1 / 2) ∈ ℝ | |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 8 | 1, 7 | jca 511 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ)) |
| 9 | flzadd 13730 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2)))) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2)))) |
| 11 | 6 | rexri 11170 | . . . . . . . . . . . . 13 ⊢ (1 / 2) ∈ ℝ* |
| 12 | 0re 11114 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
| 13 | halfgt0 12336 | . . . . . . . . . . . . . 14 ⊢ 0 < (1 / 2) | |
| 14 | 12, 6, 13 | ltleii 11236 | . . . . . . . . . . . . 13 ⊢ 0 ≤ (1 / 2) |
| 15 | halflt1 12338 | . . . . . . . . . . . . 13 ⊢ (1 / 2) < 1 | |
| 16 | 11, 14, 15 | 3pm3.2i 1340 | . . . . . . . . . . . 12 ⊢ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
| 17 | 0xr 11159 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ* | |
| 18 | 1xr 11171 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ* | |
| 19 | 17, 18 | pm3.2i 470 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℝ* ∧ 1 ∈ ℝ*) |
| 20 | elico1 13288 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1)) |
| 22 | 16, 21 | mpbir 231 | . . . . . . . . . . 11 ⊢ (1 / 2) ∈ (0[,)1) |
| 23 | 22 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (1 / 2) ∈ (0[,)1)) |
| 24 | ico01fl0 13723 | . . . . . . . . . 10 ⊢ ((1 / 2) ∈ (0[,)1) → (⌊‘(1 / 2)) = 0) | |
| 25 | 23, 24 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (⌊‘(1 / 2)) = 0) |
| 26 | 25 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (⌊‘(1 / 2))) = (𝐴 + 0)) |
| 27 | 2 | recnd 11140 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 28 | 27 | addridd 11313 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| 29 | 26, 28 | eqtrd 2766 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + (⌊‘(1 / 2))) = 𝐴) |
| 30 | 10, 29 | eqtrd 2766 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) = 𝐴) |
| 31 | 30 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = (𝐴 − 𝐴)) |
| 32 | 27 | subidd 11460 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
| 33 | 31, 32 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = 0) |
| 34 | 33 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = (abs‘0)) |
| 35 | abs0 15192 | . . . 4 ⊢ (abs‘0) = 0 | |
| 36 | 35 | a1i 11 | . . 3 ⊢ (𝜑 → (abs‘0) = 0) |
| 37 | 34, 36 | eqtrd 2766 | . 2 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = 0) |
| 38 | 5, 37 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑇‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 − cmin 11344 / cdiv 11774 2c2 12180 ℤcz 12468 [,)cico 13247 ⌊cfl 13694 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: knoppndvlem6 36559 knoppndvlem8 36561 |
| Copyright terms: Public domain | W3C validator |