|   | Mathbox for Asger C. Ipsen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizphlfeqhlf | Structured version Visualization version GIF version | ||
| Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| dnizphlfeqhlf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | 
| dnizphlfeqhlf.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| Ref | Expression | 
|---|---|
| dnizphlfeqhlf | ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dnizphlfeqhlf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zred 12722 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 3 | halfre 12480 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℝ) | 
| 5 | 2, 4 | readdcld 11290 | . . 3 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) | 
| 6 | dnizphlfeqhlf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 7 | 6 | dnival 36472 | . . 3 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) | 
| 8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) | 
| 9 | 2 | recnd 11289 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 10 | 4 | recnd 11289 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℂ) | 
| 11 | 9, 10 | addcld 11280 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ) | 
| 12 | 9, 10, 10 | addassd 11283 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2)))) | 
| 13 | 1cnd 11256 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 14 | 13 | 2halvesd 12512 | . . . . . . . 8 ⊢ (𝜑 → ((1 / 2) + (1 / 2)) = 1) | 
| 15 | 14 | oveq2d 7447 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1)) | 
| 16 | 12, 15 | eqtrd 2777 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1)) | 
| 17 | 1 | peano2zd 12725 | . . . . . 6 ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) | 
| 18 | 16, 17 | eqeltrd 2841 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ) | 
| 19 | flid 13848 | . . . . 5 ⊢ (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) | 
| 21 | 11, 10, 20 | mvrladdd 11676 | . . 3 ⊢ (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2)) | 
| 22 | 21 | fveq2d 6910 | . 2 ⊢ (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2))) | 
| 23 | halfgt0 12482 | . . . . 5 ⊢ 0 < (1 / 2) | |
| 24 | 0re 11263 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 25 | 24, 3 | ltlei 11383 | . . . . 5 ⊢ (0 < (1 / 2) → 0 ≤ (1 / 2)) | 
| 26 | 23, 25 | ax-mp 5 | . . . 4 ⊢ 0 ≤ (1 / 2) | 
| 27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ≤ (1 / 2)) | 
| 28 | 4, 27 | absidd 15461 | . 2 ⊢ (𝜑 → (abs‘(1 / 2)) = (1 / 2)) | 
| 29 | 8, 22, 28 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 < clt 11295 ≤ cle 11296 − cmin 11492 / cdiv 11920 2c2 12321 ℤcz 12613 ⌊cfl 13830 abscabs 15273 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fl 13832 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 | 
| This theorem is referenced by: knoppndvlem9 36521 | 
| Copyright terms: Public domain | W3C validator |