Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnizphlfeqhlf Structured version   Visualization version   GIF version

Theorem dnizphlfeqhlf 36021
Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.)
Hypotheses
Ref Expression
dnizphlfeqhlf.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnizphlfeqhlf.1 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
dnizphlfeqhlf (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnizphlfeqhlf
StepHypRef Expression
1 dnizphlfeqhlf.1 . . . . 5 (𝜑𝐴 ∈ ℤ)
21zred 12696 . . . 4 (𝜑𝐴 ∈ ℝ)
3 halfre 12456 . . . . 5 (1 / 2) ∈ ℝ
43a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
52, 4readdcld 11273 . . 3 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
6 dnizphlfeqhlf.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
76dnival 36016 . . 3 ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))))
85, 7syl 17 . 2 (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))))
92recnd 11272 . . . . 5 (𝜑𝐴 ∈ ℂ)
104recnd 11272 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
119, 10addcld 11263 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ)
129, 10, 10addassd 11266 . . . . . . 7 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2))))
13 1cnd 11239 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
14132halvesd 12488 . . . . . . . 8 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
1514oveq2d 7433 . . . . . . 7 (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1))
1612, 15eqtrd 2765 . . . . . 6 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1))
171peano2zd 12699 . . . . . 6 (𝜑 → (𝐴 + 1) ∈ ℤ)
1816, 17eqeltrd 2825 . . . . 5 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ)
19 flid 13805 . . . . 5 (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2)))
2018, 19syl 17 . . . 4 (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2)))
2111, 10, 20mvrladdd 11657 . . 3 (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2))
2221fveq2d 6898 . 2 (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2)))
23 halfgt0 12458 . . . . 5 0 < (1 / 2)
24 0re 11246 . . . . . 6 0 ∈ ℝ
2524, 3ltlei 11366 . . . . 5 (0 < (1 / 2) → 0 ≤ (1 / 2))
2623, 25ax-mp 5 . . . 4 0 ≤ (1 / 2)
2726a1i 11 . . 3 (𝜑 → 0 ≤ (1 / 2))
284, 27absidd 15401 . 2 (𝜑 → (abs‘(1 / 2)) = (1 / 2))
298, 22, 283eqtrd 2769 1 (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   class class class wbr 5148  cmpt 5231  cfv 6547  (class class class)co 7417  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   < clt 11278  cle 11279  cmin 11474   / cdiv 11901  2c2 12297  cz 12588  cfl 13787  abscabs 15213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fl 13789  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215
This theorem is referenced by:  knoppndvlem9  36065
  Copyright terms: Public domain W3C validator