| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizphlfeqhlf | Structured version Visualization version GIF version | ||
| Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
| Ref | Expression |
|---|---|
| dnizphlfeqhlf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| dnizphlfeqhlf.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| Ref | Expression |
|---|---|
| dnizphlfeqhlf | ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnizphlfeqhlf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zred 12587 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | halfre 12344 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 5 | 2, 4 | readdcld 11151 | . . 3 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
| 6 | dnizphlfeqhlf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 7 | 6 | dnival 36526 | . . 3 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
| 9 | 2 | recnd 11150 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | 4 | recnd 11150 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
| 11 | 9, 10 | addcld 11141 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ) |
| 12 | 9, 10, 10 | addassd 11144 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2)))) |
| 13 | 1cnd 11117 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 14 | 13 | 2halvesd 12377 | . . . . . . . 8 ⊢ (𝜑 → ((1 / 2) + (1 / 2)) = 1) |
| 15 | 14 | oveq2d 7371 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1)) |
| 16 | 12, 15 | eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1)) |
| 17 | 1 | peano2zd 12590 | . . . . . 6 ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
| 18 | 16, 17 | eqeltrd 2833 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ) |
| 19 | flid 13722 | . . . . 5 ⊢ (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) |
| 21 | 11, 10, 20 | mvrladdd 11540 | . . 3 ⊢ (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2)) |
| 22 | 21 | fveq2d 6835 | . 2 ⊢ (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2))) |
| 23 | halfgt0 12346 | . . . . 5 ⊢ 0 < (1 / 2) | |
| 24 | 0re 11124 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 25 | 24, 3 | ltlei 11245 | . . . . 5 ⊢ (0 < (1 / 2) → 0 ≤ (1 / 2)) |
| 26 | 23, 25 | ax-mp 5 | . . . 4 ⊢ 0 ≤ (1 / 2) |
| 27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ≤ (1 / 2)) |
| 28 | 4, 27 | absidd 15340 | . 2 ⊢ (𝜑 → (abs‘(1 / 2)) = (1 / 2)) |
| 29 | 8, 22, 28 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 0cc0 11016 1c1 11017 + caddc 11019 < clt 11156 ≤ cle 11157 − cmin 11354 / cdiv 11784 2c2 12190 ℤcz 12478 ⌊cfl 13704 abscabs 15151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-fl 13706 df-seq 13919 df-exp 13979 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 |
| This theorem is referenced by: knoppndvlem9 36575 |
| Copyright terms: Public domain | W3C validator |