| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizphlfeqhlf | Structured version Visualization version GIF version | ||
| Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
| Ref | Expression |
|---|---|
| dnizphlfeqhlf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| dnizphlfeqhlf.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| Ref | Expression |
|---|---|
| dnizphlfeqhlf | ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnizphlfeqhlf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zred 12702 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | halfre 12459 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 5 | 2, 4 | readdcld 11269 | . . 3 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
| 6 | dnizphlfeqhlf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 7 | 6 | dnival 36494 | . . 3 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
| 9 | 2 | recnd 11268 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | 4 | recnd 11268 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
| 11 | 9, 10 | addcld 11259 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ) |
| 12 | 9, 10, 10 | addassd 11262 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2)))) |
| 13 | 1cnd 11235 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 14 | 13 | 2halvesd 12492 | . . . . . . . 8 ⊢ (𝜑 → ((1 / 2) + (1 / 2)) = 1) |
| 15 | 14 | oveq2d 7426 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1)) |
| 16 | 12, 15 | eqtrd 2771 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1)) |
| 17 | 1 | peano2zd 12705 | . . . . . 6 ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
| 18 | 16, 17 | eqeltrd 2835 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ) |
| 19 | flid 13830 | . . . . 5 ⊢ (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) |
| 21 | 11, 10, 20 | mvrladdd 11655 | . . 3 ⊢ (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2)) |
| 22 | 21 | fveq2d 6885 | . 2 ⊢ (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2))) |
| 23 | halfgt0 12461 | . . . . 5 ⊢ 0 < (1 / 2) | |
| 24 | 0re 11242 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 25 | 24, 3 | ltlei 11362 | . . . . 5 ⊢ (0 < (1 / 2) → 0 ≤ (1 / 2)) |
| 26 | 23, 25 | ax-mp 5 | . . . 4 ⊢ 0 ≤ (1 / 2) |
| 27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ≤ (1 / 2)) |
| 28 | 4, 27 | absidd 15446 | . 2 ⊢ (𝜑 → (abs‘(1 / 2)) = (1 / 2)) |
| 29 | 8, 22, 28 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 ≤ cle 11275 − cmin 11471 / cdiv 11899 2c2 12300 ℤcz 12593 ⌊cfl 13812 abscabs 15258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fl 13814 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 |
| This theorem is referenced by: knoppndvlem9 36543 |
| Copyright terms: Public domain | W3C validator |