Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnizphlfeqhlf Structured version   Visualization version   GIF version

Theorem dnizphlfeqhlf 36459
Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.)
Hypotheses
Ref Expression
dnizphlfeqhlf.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnizphlfeqhlf.1 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
dnizphlfeqhlf (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnizphlfeqhlf
StepHypRef Expression
1 dnizphlfeqhlf.1 . . . . 5 (𝜑𝐴 ∈ ℤ)
21zred 12617 . . . 4 (𝜑𝐴 ∈ ℝ)
3 halfre 12374 . . . . 5 (1 / 2) ∈ ℝ
43a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
52, 4readdcld 11182 . . 3 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
6 dnizphlfeqhlf.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
76dnival 36454 . . 3 ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))))
85, 7syl 17 . 2 (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))))
92recnd 11181 . . . . 5 (𝜑𝐴 ∈ ℂ)
104recnd 11181 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
119, 10addcld 11172 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ)
129, 10, 10addassd 11175 . . . . . . 7 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2))))
13 1cnd 11148 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
14132halvesd 12407 . . . . . . . 8 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
1514oveq2d 7386 . . . . . . 7 (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1))
1612, 15eqtrd 2764 . . . . . 6 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1))
171peano2zd 12620 . . . . . 6 (𝜑 → (𝐴 + 1) ∈ ℤ)
1816, 17eqeltrd 2828 . . . . 5 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ)
19 flid 13749 . . . . 5 (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2)))
2018, 19syl 17 . . . 4 (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2)))
2111, 10, 20mvrladdd 11570 . . 3 (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2))
2221fveq2d 6845 . 2 (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2)))
23 halfgt0 12376 . . . . 5 0 < (1 / 2)
24 0re 11155 . . . . . 6 0 ∈ ℝ
2524, 3ltlei 11275 . . . . 5 (0 < (1 / 2) → 0 ≤ (1 / 2))
2623, 25ax-mp 5 . . . 4 0 ≤ (1 / 2)
2726a1i 11 . . 3 (𝜑 → 0 ≤ (1 / 2))
284, 27absidd 15367 . 2 (𝜑 → (abs‘(1 / 2)) = (1 / 2))
298, 22, 283eqtrd 2768 1 (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5102  cmpt 5183  cfv 6500  (class class class)co 7370  cr 11046  0cc0 11047  1c1 11048   + caddc 11050   < clt 11187  cle 11188  cmin 11384   / cdiv 11814  2c2 12220  cz 12508  cfl 13731  abscabs 15178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-er 8649  df-en 8897  df-dom 8898  df-sdom 8899  df-sup 9370  df-inf 9371  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-n0 12422  df-z 12509  df-uz 12773  df-rp 12931  df-fl 13733  df-seq 13946  df-exp 14006  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180
This theorem is referenced by:  knoppndvlem9  36503
  Copyright terms: Public domain W3C validator