![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizphlfeqhlf | Structured version Visualization version GIF version |
Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
Ref | Expression |
---|---|
dnizphlfeqhlf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnizphlfeqhlf.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Ref | Expression |
---|---|
dnizphlfeqhlf | ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnizphlfeqhlf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zred 12696 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | halfre 12456 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
5 | 2, 4 | readdcld 11273 | . . 3 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
6 | dnizphlfeqhlf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
7 | 6 | dnival 36016 | . . 3 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
9 | 2 | recnd 11272 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | 4 | recnd 11272 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
11 | 9, 10 | addcld 11263 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ) |
12 | 9, 10, 10 | addassd 11266 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2)))) |
13 | 1cnd 11239 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℂ) | |
14 | 13 | 2halvesd 12488 | . . . . . . . 8 ⊢ (𝜑 → ((1 / 2) + (1 / 2)) = 1) |
15 | 14 | oveq2d 7433 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1)) |
16 | 12, 15 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1)) |
17 | 1 | peano2zd 12699 | . . . . . 6 ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
18 | 16, 17 | eqeltrd 2825 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ) |
19 | flid 13805 | . . . . 5 ⊢ (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) |
21 | 11, 10, 20 | mvrladdd 11657 | . . 3 ⊢ (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2)) |
22 | 21 | fveq2d 6898 | . 2 ⊢ (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2))) |
23 | halfgt0 12458 | . . . . 5 ⊢ 0 < (1 / 2) | |
24 | 0re 11246 | . . . . . 6 ⊢ 0 ∈ ℝ | |
25 | 24, 3 | ltlei 11366 | . . . . 5 ⊢ (0 < (1 / 2) → 0 ≤ (1 / 2)) |
26 | 23, 25 | ax-mp 5 | . . . 4 ⊢ 0 ≤ (1 / 2) |
27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ≤ (1 / 2)) |
28 | 4, 27 | absidd 15401 | . 2 ⊢ (𝜑 → (abs‘(1 / 2)) = (1 / 2)) |
29 | 8, 22, 28 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6547 (class class class)co 7417 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 < clt 11278 ≤ cle 11279 − cmin 11474 / cdiv 11901 2c2 12297 ℤcz 12588 ⌊cfl 13787 abscabs 15213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fl 13789 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 |
This theorem is referenced by: knoppndvlem9 36065 |
Copyright terms: Public domain | W3C validator |