Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizphlfeqhlf | Structured version Visualization version GIF version |
Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
Ref | Expression |
---|---|
dnizphlfeqhlf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnizphlfeqhlf.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Ref | Expression |
---|---|
dnizphlfeqhlf | ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnizphlfeqhlf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zred 12527 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | halfre 12288 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
5 | 2, 4 | readdcld 11105 | . . 3 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
6 | dnizphlfeqhlf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
7 | 6 | dnival 34747 | . . 3 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
9 | 2 | recnd 11104 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | 4 | recnd 11104 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
11 | 9, 10 | addcld 11095 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ) |
12 | 9, 10, 10 | addassd 11098 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2)))) |
13 | 1cnd 11071 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℂ) | |
14 | 13 | 2halvesd 12320 | . . . . . . . 8 ⊢ (𝜑 → ((1 / 2) + (1 / 2)) = 1) |
15 | 14 | oveq2d 7353 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1)) |
16 | 12, 15 | eqtrd 2776 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1)) |
17 | 1 | peano2zd 12530 | . . . . . 6 ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
18 | 16, 17 | eqeltrd 2837 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ) |
19 | flid 13629 | . . . . 5 ⊢ (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) |
21 | 11, 10, 20 | mvrladdd 11489 | . . 3 ⊢ (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2)) |
22 | 21 | fveq2d 6829 | . 2 ⊢ (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2))) |
23 | halfgt0 12290 | . . . . 5 ⊢ 0 < (1 / 2) | |
24 | 0re 11078 | . . . . . 6 ⊢ 0 ∈ ℝ | |
25 | 24, 3 | ltlei 11198 | . . . . 5 ⊢ (0 < (1 / 2) → 0 ≤ (1 / 2)) |
26 | 23, 25 | ax-mp 5 | . . . 4 ⊢ 0 ≤ (1 / 2) |
27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ≤ (1 / 2)) |
28 | 4, 27 | absidd 15233 | . 2 ⊢ (𝜑 → (abs‘(1 / 2)) = (1 / 2)) |
29 | 8, 22, 28 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 class class class wbr 5092 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 ℝcr 10971 0cc0 10972 1c1 10973 + caddc 10975 < clt 11110 ≤ cle 11111 − cmin 11306 / cdiv 11733 2c2 12129 ℤcz 12420 ⌊cfl 13611 abscabs 15044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fl 13613 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 |
This theorem is referenced by: knoppndvlem9 34796 |
Copyright terms: Public domain | W3C validator |