| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvadd | Structured version Visualization version GIF version | ||
| Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 11-Feb-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
| Ref | Expression |
|---|---|
| dvhvadd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvhvadd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvhvadd.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvhvadd.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvhvadd.f | ⊢ 𝐷 = (Scalar‘𝑈) |
| dvhvadd.s | ⊢ + = (+g‘𝑈) |
| dvhvadd.p | ⊢ ⨣ = (+g‘𝐷) |
| Ref | Expression |
|---|---|
| dvhvadd | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvhvadd.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvhvadd.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dvhvadd.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | dvhvadd.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | dvhvadd.f | . . . 4 ⊢ 𝐷 = (Scalar‘𝑈) | |
| 6 | dvhvadd.p | . . . 4 ⊢ ⨣ = (+g‘𝐷) | |
| 7 | eqid 2731 | . . . 4 ⊢ (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) | |
| 8 | dvhvadd.s | . . . 4 ⊢ + = (+g‘𝑈) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | dvhfvadd 41138 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉)) |
| 10 | 9 | oveqd 7363 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 + 𝐺) = (𝐹(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉)𝐺)) |
| 11 | 7 | dvhvaddval 41137 | . 2 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉)𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
| 12 | 10, 11 | sylan9eq 2786 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 × cxp 5612 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 +gcplusg 17161 Scalarcsca 17164 HLchlt 39397 LHypclh 40031 LTrncltrn 40148 TEndoctendo 40799 DVecHcdvh 41125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-edring 40804 df-dvech 41126 |
| This theorem is referenced by: dvhopvadd 41140 dvhvaddcl 41142 dvhvaddcomN 41143 dvhvaddass 41144 dvhlveclem 41155 diblss 41217 dicvaddcl 41237 |
| Copyright terms: Public domain | W3C validator |