Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvadd | Structured version Visualization version GIF version |
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 11-Feb-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
Ref | Expression |
---|---|
dvhvadd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhvadd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhvadd.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhvadd.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhvadd.f | ⊢ 𝐷 = (Scalar‘𝑈) |
dvhvadd.s | ⊢ + = (+g‘𝑈) |
dvhvadd.p | ⊢ ⨣ = (+g‘𝐷) |
Ref | Expression |
---|---|
dvhvadd | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhvadd.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvhvadd.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dvhvadd.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | dvhvadd.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | dvhvadd.f | . . . 4 ⊢ 𝐷 = (Scalar‘𝑈) | |
6 | dvhvadd.p | . . . 4 ⊢ ⨣ = (+g‘𝐷) | |
7 | eqid 2738 | . . . 4 ⊢ (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) | |
8 | dvhvadd.s | . . . 4 ⊢ + = (+g‘𝑈) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dvhfvadd 38868 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉)) |
10 | 9 | oveqd 7248 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 + 𝐺) = (𝐹(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉)𝐺)) |
11 | 7 | dvhvaddval 38867 | . 2 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉)𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
12 | 10, 11 | sylan9eq 2799 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 〈cop 4561 × cxp 5563 ∘ ccom 5569 ‘cfv 6397 (class class class)co 7231 ∈ cmpo 7233 1st c1st 7777 2nd c2nd 7778 +gcplusg 16826 Scalarcsca 16829 HLchlt 37127 LHypclh 37761 LTrncltrn 37878 TEndoctendo 38529 DVecHcdvh 38855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-struct 16724 df-slot 16759 df-ndx 16769 df-base 16785 df-plusg 16839 df-mulr 16840 df-sca 16842 df-vsca 16843 df-edring 38534 df-dvech 38856 |
This theorem is referenced by: dvhopvadd 38870 dvhvaddcl 38872 dvhvaddcomN 38873 dvhvaddass 38874 dvhlveclem 38885 diblss 38947 dicvaddcl 38967 |
Copyright terms: Public domain | W3C validator |