Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhfvadd Structured version   Visualization version   GIF version

Theorem dvhfvadd 39554
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
dvhfvadd.h 𝐻 = (LHyp‘𝐾)
dvhfvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhfvadd.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhfvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhfvadd.f 𝐷 = (Scalar‘𝑈)
dvhfvadd.p = (+g𝐷)
dvhfvadd.a = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
dvhfvadd.s + = (+g𝑈)
Assertion
Ref Expression
dvhfvadd ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = )
Distinct variable groups:   𝑓,𝑔,𝐸   𝑓,𝐻,𝑔   𝑓,𝐾,𝑔   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   + (𝑓,𝑔)   (𝑓,𝑔)   (𝑓,𝑔)   𝑈(𝑓,𝑔)

Proof of Theorem dvhfvadd
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhfvadd.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvhfvadd.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhfvadd.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 eqid 2736 . . . . 5 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvhfvadd.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvhset 39544 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
76fveq2d 6846 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝑈) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
8 dvhfvadd.p . . . . . . . . . 10 = (+g𝐷)
9 dvhfvadd.f . . . . . . . . . . . 12 𝐷 = (Scalar‘𝑈)
101, 4, 5, 9dvhsca 39545 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
1110fveq2d 6846 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (+g‘((EDRing‘𝐾)‘𝑊)))
128, 11eqtrid 2788 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g‘((EDRing‘𝐾)‘𝑊)))
1312oveqd 7374 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((2nd𝑓) (2nd𝑔)) = ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)))
14133ad2ant1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) (2nd𝑔)) = ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)))
15 xp2nd 7954 . . . . . . . . . 10 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
16 xp2nd 7954 . . . . . . . . . 10 (𝑔 ∈ (𝑇 × 𝐸) → (2nd𝑔) ∈ 𝐸)
1715, 16anim12i 613 . . . . . . . . 9 ((𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) ∈ 𝐸 ∧ (2nd𝑔) ∈ 𝐸))
18 eqid 2736 . . . . . . . . . 10 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
191, 2, 3, 4, 18erngplus 39266 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝑓) ∈ 𝐸 ∧ (2nd𝑔) ∈ 𝐸)) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2017, 19sylan2 593 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸))) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
21203impb 1115 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2214, 21eqtrd 2776 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) (2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2322opeq2d 4837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩ = ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)
2423mpoeq3dva 7434 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩))
252fvexi 6856 . . . . . . 7 𝑇 ∈ V
263fvexi 6856 . . . . . . 7 𝐸 ∈ V
2725, 26xpex 7687 . . . . . 6 (𝑇 × 𝐸) ∈ V
2827, 27mpoex 8012 . . . . 5 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) ∈ V
29 eqid 2736 . . . . . 6 ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}) = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})
3029lmodplusg 17208 . . . . 5 ((𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) ∈ V → (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
3128, 30ax-mp 5 . . . 4 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
3224, 31eqtr2di 2793 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩))
337, 32eqtrd 2776 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝑈) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩))
34 dvhfvadd.s . 2 + = (+g𝑈)
35 dvhfvadd.a . 2 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
3633, 34, 353eqtr4g 2801 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  {csn 4586  {ctp 4590  cop 4592  cmpt 5188   × cxp 5631  ccom 5637  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920  ndxcnx 17065  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  TEndoctendo 39215  EDRingcedring 39216  DVecHcdvh 39541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-edring 39220  df-dvech 39542
This theorem is referenced by:  dvhvadd  39555
  Copyright terms: Public domain W3C validator