Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhfvadd Structured version   Visualization version   GIF version

Theorem dvhfvadd 39105
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
dvhfvadd.h 𝐻 = (LHyp‘𝐾)
dvhfvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhfvadd.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhfvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhfvadd.f 𝐷 = (Scalar‘𝑈)
dvhfvadd.p = (+g𝐷)
dvhfvadd.a = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
dvhfvadd.s + = (+g𝑈)
Assertion
Ref Expression
dvhfvadd ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = )
Distinct variable groups:   𝑓,𝑔,𝐸   𝑓,𝐻,𝑔   𝑓,𝐾,𝑔   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   + (𝑓,𝑔)   (𝑓,𝑔)   (𝑓,𝑔)   𝑈(𝑓,𝑔)

Proof of Theorem dvhfvadd
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhfvadd.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvhfvadd.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhfvadd.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 eqid 2738 . . . . 5 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvhfvadd.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvhset 39095 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
76fveq2d 6778 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝑈) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
8 dvhfvadd.p . . . . . . . . . 10 = (+g𝐷)
9 dvhfvadd.f . . . . . . . . . . . 12 𝐷 = (Scalar‘𝑈)
101, 4, 5, 9dvhsca 39096 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
1110fveq2d 6778 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (+g‘((EDRing‘𝐾)‘𝑊)))
128, 11eqtrid 2790 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g‘((EDRing‘𝐾)‘𝑊)))
1312oveqd 7292 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((2nd𝑓) (2nd𝑔)) = ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)))
14133ad2ant1 1132 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) (2nd𝑔)) = ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)))
15 xp2nd 7864 . . . . . . . . . 10 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
16 xp2nd 7864 . . . . . . . . . 10 (𝑔 ∈ (𝑇 × 𝐸) → (2nd𝑔) ∈ 𝐸)
1715, 16anim12i 613 . . . . . . . . 9 ((𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) ∈ 𝐸 ∧ (2nd𝑔) ∈ 𝐸))
18 eqid 2738 . . . . . . . . . 10 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
191, 2, 3, 4, 18erngplus 38817 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝑓) ∈ 𝐸 ∧ (2nd𝑔) ∈ 𝐸)) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2017, 19sylan2 593 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸))) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
21203impb 1114 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2214, 21eqtrd 2778 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) (2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2322opeq2d 4811 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩ = ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)
2423mpoeq3dva 7352 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩))
252fvexi 6788 . . . . . . 7 𝑇 ∈ V
263fvexi 6788 . . . . . . 7 𝐸 ∈ V
2725, 26xpex 7603 . . . . . 6 (𝑇 × 𝐸) ∈ V
2827, 27mpoex 7920 . . . . 5 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) ∈ V
29 eqid 2738 . . . . . 6 ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}) = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})
3029lmodplusg 17037 . . . . 5 ((𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) ∈ V → (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
3128, 30ax-mp 5 . . . 4 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
3224, 31eqtr2di 2795 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩))
337, 32eqtrd 2778 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝑈) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩))
34 dvhfvadd.s . 2 + = (+g𝑈)
35 dvhfvadd.a . 2 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
3633, 34, 353eqtr4g 2803 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  {csn 4561  {ctp 4565  cop 4567  cmpt 5157   × cxp 5587  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TEndoctendo 38766  EDRingcedring 38767  DVecHcdvh 39092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-edring 38771  df-dvech 39093
This theorem is referenced by:  dvhvadd  39106
  Copyright terms: Public domain W3C validator