![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopaddN | Structured version Visualization version GIF version |
Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhopadd.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))⟩) |
Ref | Expression |
---|---|
dvhopaddN | ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5713 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸)) | |
2 | opelxpi 5713 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸)) | |
3 | dvhopadd.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))⟩) | |
4 | 3 | dvhvaddval 39956 | . . 3 ⊢ ((⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩) |
5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩) |
6 | op1stg 7986 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹) | |
7 | 6 | adantr 481 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹) |
8 | op1stg 7986 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺) | |
9 | 8 | adantl 482 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺) |
10 | 7, 9 | coeq12d 5864 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)) = (𝐹 ∘ 𝐺)) |
11 | op2ndg 7987 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘⟨𝐹, 𝑈⟩) = 𝑈) | |
12 | op2ndg 7987 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (2nd ‘⟨𝐺, 𝑉⟩) = 𝑉) | |
13 | 11, 12 | oveqan12d 7427 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩)) = (𝑈𝑃𝑉)) |
14 | 10, 13 | opeq12d 4881 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩ = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
15 | 5, 14 | eqtrd 2772 | 1 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 × cxp 5674 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 1st c1st 7972 2nd c2nd 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: dvhopN 39982 |
Copyright terms: Public domain | W3C validator |