| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopaddN | Structured version Visualization version GIF version | ||
| Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvhopadd.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) |
| Ref | Expression |
|---|---|
| dvhopaddN | ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5656 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) | |
| 2 | opelxpi 5656 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → 〈𝐺, 𝑉〉 ∈ (𝑇 × 𝐸)) | |
| 3 | dvhopadd.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) | |
| 4 | 3 | dvhvaddval 41089 | . . 3 ⊢ ((〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸) ∧ 〈𝐺, 𝑉〉 ∈ (𝑇 × 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉) |
| 6 | op1stg 7936 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) |
| 8 | op1stg 7936 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (1st ‘〈𝐺, 𝑉〉) = 𝐺) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘〈𝐺, 𝑉〉) = 𝐺) |
| 10 | 7, 9 | coeq12d 5807 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)) = (𝐹 ∘ 𝐺)) |
| 11 | op2ndg 7937 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑈〉) = 𝑈) | |
| 12 | op2ndg 7937 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (2nd ‘〈𝐺, 𝑉〉) = 𝑉) | |
| 13 | 11, 12 | oveqan12d 7368 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉)) = (𝑈𝑃𝑉)) |
| 14 | 10, 13 | opeq12d 4832 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉 = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| 15 | 5, 14 | eqtrd 2764 | 1 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 × cxp 5617 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 |
| This theorem is referenced by: dvhopN 41115 |
| Copyright terms: Public domain | W3C validator |