Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopaddN Structured version   Visualization version   GIF version

Theorem dvhopaddN 41115
Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
dvhopadd.a 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
Assertion
Ref Expression
dvhopaddN (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (⟨𝐹, 𝑈𝐴𝐺, 𝑉⟩) = ⟨(𝐹𝐺), (𝑈𝑃𝑉)⟩)
Distinct variable groups:   𝑓,𝑔,𝐸   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem dvhopaddN
StepHypRef Expression
1 opelxpi 5678 . . 3 ((𝐹𝑇𝑈𝐸) → ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸))
2 opelxpi 5678 . . 3 ((𝐺𝑇𝑉𝐸) → ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸))
3 dvhopadd.a . . . 4 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
43dvhvaddval 41091 . . 3 ((⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸)) → (⟨𝐹, 𝑈𝐴𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩)
51, 2, 4syl2an 596 . 2 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (⟨𝐹, 𝑈𝐴𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩)
6 op1stg 7983 . . . . 5 ((𝐹𝑇𝑈𝐸) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹)
76adantr 480 . . . 4 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹)
8 op1stg 7983 . . . . 5 ((𝐺𝑇𝑉𝐸) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺)
98adantl 481 . . . 4 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺)
107, 9coeq12d 5831 . . 3 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → ((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)) = (𝐹𝐺))
11 op2ndg 7984 . . . 4 ((𝐹𝑇𝑈𝐸) → (2nd ‘⟨𝐹, 𝑈⟩) = 𝑈)
12 op2ndg 7984 . . . 4 ((𝐺𝑇𝑉𝐸) → (2nd ‘⟨𝐺, 𝑉⟩) = 𝑉)
1311, 12oveqan12d 7409 . . 3 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩)) = (𝑈𝑃𝑉))
1410, 13opeq12d 4848 . 2 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩ = ⟨(𝐹𝐺), (𝑈𝑃𝑉)⟩)
155, 14eqtrd 2765 1 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (⟨𝐹, 𝑈𝐴𝐺, 𝑉⟩) = ⟨(𝐹𝐺), (𝑈𝑃𝑉)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4598   × cxp 5639  ccom 5645  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972
This theorem is referenced by:  dvhopN  41117
  Copyright terms: Public domain W3C validator