![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopaddN | Structured version Visualization version GIF version |
Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhopadd.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))⟩) |
Ref | Expression |
---|---|
dvhopaddN | ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5709 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸)) | |
2 | opelxpi 5709 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸)) | |
3 | dvhopadd.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))⟩) | |
4 | 3 | dvhvaddval 40619 | . . 3 ⊢ ((⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩) |
5 | 1, 2, 4 | syl2an 594 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩) |
6 | op1stg 8003 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹) | |
7 | 6 | adantr 479 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹) |
8 | op1stg 8003 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺) | |
9 | 8 | adantl 480 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺) |
10 | 7, 9 | coeq12d 5861 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)) = (𝐹 ∘ 𝐺)) |
11 | op2ndg 8004 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘⟨𝐹, 𝑈⟩) = 𝑈) | |
12 | op2ndg 8004 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (2nd ‘⟨𝐺, 𝑉⟩) = 𝑉) | |
13 | 11, 12 | oveqan12d 7435 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩)) = (𝑈𝑃𝑉)) |
14 | 10, 13 | opeq12d 4877 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩ = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
15 | 5, 14 | eqtrd 2765 | 1 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⟨cop 4630 × cxp 5670 ∘ ccom 5676 ‘cfv 6543 (class class class)co 7416 ∈ cmpo 7418 1st c1st 7989 2nd c2nd 7990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7991 df-2nd 7992 |
This theorem is referenced by: dvhopN 40645 |
Copyright terms: Public domain | W3C validator |