Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopaddN Structured version   Visualization version   GIF version

 Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
dvhopadd.a 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
Assertion
Ref Expression
dvhopaddN (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (⟨𝐹, 𝑈𝐴𝐺, 𝑉⟩) = ⟨(𝐹𝐺), (𝑈𝑃𝑉)⟩)
Distinct variable groups:   𝑓,𝑔,𝐸   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem dvhopaddN
StepHypRef Expression
1 opelxpi 5569 . . 3 ((𝐹𝑇𝑈𝐸) → ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸))
2 opelxpi 5569 . . 3 ((𝐺𝑇𝑉𝐸) → ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸))
3 dvhopadd.a . . . 4 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
43dvhvaddval 38344 . . 3 ((⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸)) → (⟨𝐹, 𝑈𝐴𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩)
51, 2, 4syl2an 598 . 2 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (⟨𝐹, 𝑈𝐴𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩)
6 op1stg 7687 . . . . 5 ((𝐹𝑇𝑈𝐸) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹)
76adantr 484 . . . 4 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹)
8 op1stg 7687 . . . . 5 ((𝐺𝑇𝑉𝐸) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺)
98adantl 485 . . . 4 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺)
107, 9coeq12d 5712 . . 3 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → ((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)) = (𝐹𝐺))
11 op2ndg 7688 . . . 4 ((𝐹𝑇𝑈𝐸) → (2nd ‘⟨𝐹, 𝑈⟩) = 𝑈)
12 op2ndg 7688 . . . 4 ((𝐺𝑇𝑉𝐸) → (2nd ‘⟨𝐺, 𝑉⟩) = 𝑉)
1311, 12oveqan12d 7159 . . 3 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩)) = (𝑈𝑃𝑉))
1410, 13opeq12d 4786 . 2 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩ = ⟨(𝐹𝐺), (𝑈𝑃𝑉)⟩)
155, 14eqtrd 2857 1 (((𝐹𝑇𝑈𝐸) ∧ (𝐺𝑇𝑉𝐸)) → (⟨𝐹, 𝑈𝐴𝐺, 𝑉⟩) = ⟨(𝐹𝐺), (𝑈𝑃𝑉)⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114  ⟨cop 4545   × cxp 5530   ∘ ccom 5536  ‘cfv 6334  (class class class)co 7140   ∈ cmpo 7142  1st c1st 7673  2nd c2nd 7674 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-iota 6293  df-fun 6336  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676 This theorem is referenced by:  dvhopN  38370
 Copyright terms: Public domain W3C validator