| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopaddN | Structured version Visualization version GIF version | ||
| Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvhopadd.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) |
| Ref | Expression |
|---|---|
| dvhopaddN | ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5691 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) | |
| 2 | opelxpi 5691 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → 〈𝐺, 𝑉〉 ∈ (𝑇 × 𝐸)) | |
| 3 | dvhopadd.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) | |
| 4 | 3 | dvhvaddval 41109 | . . 3 ⊢ ((〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸) ∧ 〈𝐺, 𝑉〉 ∈ (𝑇 × 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉) |
| 6 | op1stg 8000 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) |
| 8 | op1stg 8000 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (1st ‘〈𝐺, 𝑉〉) = 𝐺) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘〈𝐺, 𝑉〉) = 𝐺) |
| 10 | 7, 9 | coeq12d 5844 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)) = (𝐹 ∘ 𝐺)) |
| 11 | op2ndg 8001 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑈〉) = 𝑈) | |
| 12 | op2ndg 8001 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (2nd ‘〈𝐺, 𝑉〉) = 𝑉) | |
| 13 | 11, 12 | oveqan12d 7424 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉)) = (𝑈𝑃𝑉)) |
| 14 | 10, 13 | opeq12d 4857 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉 = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| 15 | 5, 14 | eqtrd 2770 | 1 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 × cxp 5652 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7986 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: dvhopN 41135 |
| Copyright terms: Public domain | W3C validator |