| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopaddN | Structured version Visualization version GIF version | ||
| Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvhopadd.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) |
| Ref | Expression |
|---|---|
| dvhopaddN | ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5651 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) | |
| 2 | opelxpi 5651 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → 〈𝐺, 𝑉〉 ∈ (𝑇 × 𝐸)) | |
| 3 | dvhopadd.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) | |
| 4 | 3 | dvhvaddval 41188 | . . 3 ⊢ ((〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸) ∧ 〈𝐺, 𝑉〉 ∈ (𝑇 × 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉) |
| 6 | op1stg 7933 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) |
| 8 | op1stg 7933 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (1st ‘〈𝐺, 𝑉〉) = 𝐺) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘〈𝐺, 𝑉〉) = 𝐺) |
| 10 | 7, 9 | coeq12d 5803 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)) = (𝐹 ∘ 𝐺)) |
| 11 | op2ndg 7934 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑈〉) = 𝑈) | |
| 12 | op2ndg 7934 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (2nd ‘〈𝐺, 𝑉〉) = 𝑉) | |
| 13 | 11, 12 | oveqan12d 7365 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉)) = (𝑈𝑃𝑉)) |
| 14 | 10, 13 | opeq12d 4830 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉 = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| 15 | 5, 14 | eqtrd 2766 | 1 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 × cxp 5612 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: dvhopN 41214 |
| Copyright terms: Public domain | W3C validator |