![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopaddN | Structured version Visualization version GIF version |
Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhopadd.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))⟩) |
Ref | Expression |
---|---|
dvhopaddN | ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5671 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸)) | |
2 | opelxpi 5671 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸)) | |
3 | dvhopadd.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))⟩) | |
4 | 3 | dvhvaddval 39556 | . . 3 ⊢ ((⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑉⟩ ∈ (𝑇 × 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩) |
5 | 1, 2, 4 | syl2an 597 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩) |
6 | op1stg 7934 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹) | |
7 | 6 | adantr 482 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹) |
8 | op1stg 7934 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺) | |
9 | 8 | adantl 483 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘⟨𝐺, 𝑉⟩) = 𝐺) |
10 | 7, 9 | coeq12d 5821 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)) = (𝐹 ∘ 𝐺)) |
11 | op2ndg 7935 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘⟨𝐹, 𝑈⟩) = 𝑈) | |
12 | op2ndg 7935 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (2nd ‘⟨𝐺, 𝑉⟩) = 𝑉) | |
13 | 11, 12 | oveqan12d 7377 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩)) = (𝑈𝑃𝑉)) |
14 | 10, 13 | opeq12d 4839 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ⟨((1st ‘⟨𝐹, 𝑈⟩) ∘ (1st ‘⟨𝐺, 𝑉⟩)), ((2nd ‘⟨𝐹, 𝑈⟩)𝑃(2nd ‘⟨𝐺, 𝑉⟩))⟩ = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
15 | 5, 14 | eqtrd 2777 | 1 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (⟨𝐹, 𝑈⟩𝐴⟨𝐺, 𝑉⟩) = ⟨(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⟨cop 4593 × cxp 5632 ∘ ccom 5638 ‘cfv 6497 (class class class)co 7358 ∈ cmpo 7360 1st c1st 7920 2nd c2nd 7921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 |
This theorem is referenced by: dvhopN 39582 |
Copyright terms: Public domain | W3C validator |