Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopaddN | Structured version Visualization version GIF version |
Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhopadd.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) |
Ref | Expression |
---|---|
dvhopaddN | ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5617 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) | |
2 | opelxpi 5617 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → 〈𝐺, 𝑉〉 ∈ (𝑇 × 𝐸)) | |
3 | dvhopadd.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) | |
4 | 3 | dvhvaddval 39031 | . . 3 ⊢ ((〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸) ∧ 〈𝐺, 𝑉〉 ∈ (𝑇 × 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉) |
5 | 1, 2, 4 | syl2an 595 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉) |
6 | op1stg 7816 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) | |
7 | 6 | adantr 480 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) |
8 | op1stg 7816 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (1st ‘〈𝐺, 𝑉〉) = 𝐺) | |
9 | 8 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (1st ‘〈𝐺, 𝑉〉) = 𝐺) |
10 | 7, 9 | coeq12d 5762 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)) = (𝐹 ∘ 𝐺)) |
11 | op2ndg 7817 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑈〉) = 𝑈) | |
12 | op2ndg 7817 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸) → (2nd ‘〈𝐺, 𝑉〉) = 𝑉) | |
13 | 11, 12 | oveqan12d 7274 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉)) = (𝑈𝑃𝑉)) |
14 | 10, 13 | opeq12d 4809 | . 2 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → 〈((1st ‘〈𝐹, 𝑈〉) ∘ (1st ‘〈𝐺, 𝑉〉)), ((2nd ‘〈𝐹, 𝑈〉)𝑃(2nd ‘〈𝐺, 𝑉〉))〉 = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
15 | 5, 14 | eqtrd 2778 | 1 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: dvhopN 39057 |
Copyright terms: Public domain | W3C validator |