Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbndx Structured version   Visualization version   GIF version

Theorem isbndx 37845
Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbndx (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbndx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isbnd 37843 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
2 metxmet 24252 . . . 4 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
3 simpr 484 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
4 xmetf 24247 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ*)
5 ffn 6658 . . . . . . . 8 (𝑀:(𝑋 × 𝑋)⟶ℝ*𝑀 Fn (𝑋 × 𝑋))
63, 4, 53syl 18 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 Fn (𝑋 × 𝑋))
7 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 = (𝑥(ball‘𝑀)𝑟))
8 rpxr 12904 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ ℝ) = (𝑀 “ ℝ)
109blssec 24353 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
11103expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
128, 11sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
1312adantrr 717 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
147, 13eqsstrd 3965 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 ⊆ [𝑥](𝑀 “ ℝ))
1514sselda 3930 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑦 ∈ [𝑥](𝑀 “ ℝ))
16 vex 3441 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 vex 3441 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1816, 17elec 8676 . . . . . . . . . . . . . 14 (𝑦 ∈ [𝑥](𝑀 “ ℝ) ↔ 𝑥(𝑀 “ ℝ)𝑦)
1915, 18sylib 218 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑥(𝑀 “ ℝ)𝑦)
209xmeterval 24350 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2120ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2219, 21mpbid 232 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ))
2322simp3d 1144 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
2423ralrimiva 3125 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
2524rexlimdvaa 3135 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2625ralimdva 3145 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2726impcom 407 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
28 ffnov 7480 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶ℝ ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
296, 27, 28sylanbrc 583 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
30 ismet2 24251 . . . . . 6 (𝑀 ∈ (Met‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ 𝑀:(𝑋 × 𝑋)⟶ℝ))
313, 29, 30sylanbrc 583 . . . . 5 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (Met‘𝑋))
3231ex 412 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (∞Met‘𝑋) → 𝑀 ∈ (Met‘𝑋)))
332, 32impbid2 226 . . 3 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (∞Met‘𝑋)))
3433pm5.32ri 575 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
351, 34bitri 275 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5095   × cxp 5619  ccnv 5620  cima 5624   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7354  [cec 8628  cr 11014  *cxr 11154  +crp 12894  ∞Metcxmet 21280  Metcmet 21281  ballcbl 21282  Bndcbnd 37830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-er 8630  df-ec 8632  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-2 12197  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-bnd 37842
This theorem is referenced by:  isbnd2  37846  blbnd  37850  ismtybndlem  37869
  Copyright terms: Public domain W3C validator