Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbndx Structured version   Visualization version   GIF version

Theorem isbndx 37828
Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbndx (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbndx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isbnd 37826 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
2 metxmet 24250 . . . 4 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
3 simpr 484 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
4 xmetf 24245 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ*)
5 ffn 6651 . . . . . . . 8 (𝑀:(𝑋 × 𝑋)⟶ℝ*𝑀 Fn (𝑋 × 𝑋))
63, 4, 53syl 18 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 Fn (𝑋 × 𝑋))
7 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 = (𝑥(ball‘𝑀)𝑟))
8 rpxr 12900 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ ℝ) = (𝑀 “ ℝ)
109blssec 24351 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
11103expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
128, 11sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
1312adantrr 717 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
147, 13eqsstrd 3969 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 ⊆ [𝑥](𝑀 “ ℝ))
1514sselda 3934 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑦 ∈ [𝑥](𝑀 “ ℝ))
16 vex 3440 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 vex 3440 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1816, 17elec 8668 . . . . . . . . . . . . . 14 (𝑦 ∈ [𝑥](𝑀 “ ℝ) ↔ 𝑥(𝑀 “ ℝ)𝑦)
1915, 18sylib 218 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑥(𝑀 “ ℝ)𝑦)
209xmeterval 24348 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2120ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2219, 21mpbid 232 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ))
2322simp3d 1144 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
2423ralrimiva 3124 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
2524rexlimdvaa 3134 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2625ralimdva 3144 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2726impcom 407 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
28 ffnov 7472 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶ℝ ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
296, 27, 28sylanbrc 583 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
30 ismet2 24249 . . . . . 6 (𝑀 ∈ (Met‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ 𝑀:(𝑋 × 𝑋)⟶ℝ))
313, 29, 30sylanbrc 583 . . . . 5 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (Met‘𝑋))
3231ex 412 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (∞Met‘𝑋) → 𝑀 ∈ (Met‘𝑋)))
332, 32impbid2 226 . . 3 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (∞Met‘𝑋)))
3433pm5.32ri 575 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
351, 34bitri 275 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091   × cxp 5614  ccnv 5615  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  [cec 8620  cr 11005  *cxr 11145  +crp 12890  ∞Metcxmet 21277  Metcmet 21278  ballcbl 21279  Bndcbnd 37813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-ec 8624  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-2 12188  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-bnd 37825
This theorem is referenced by:  isbnd2  37829  blbnd  37833  ismtybndlem  37852
  Copyright terms: Public domain W3C validator