| Step | Hyp | Ref
| Expression |
| 1 | | isbnd 37787 |
. 2
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
| 2 | | metxmet 24344 |
. . . 4
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
| 3 | | simpr 484 |
. . . . . 6
⊢
((∀𝑥 ∈
𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 4 | | xmetf 24339 |
. . . . . . . 8
⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ*) |
| 5 | | ffn 6736 |
. . . . . . . 8
⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ* → 𝑀 Fn (𝑋 × 𝑋)) |
| 6 | 3, 4, 5 | 3syl 18 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 Fn (𝑋 × 𝑋)) |
| 7 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 = (𝑥(ball‘𝑀)𝑟)) |
| 8 | | rpxr 13044 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 9 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡𝑀 “ ℝ) = (◡𝑀 “ ℝ) |
| 10 | 9 | blssec 24445 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](◡𝑀 “ ℝ)) |
| 11 | 10 | 3expa 1119 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](◡𝑀 “ ℝ)) |
| 12 | 8, 11 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](◡𝑀 “ ℝ)) |
| 13 | 12 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](◡𝑀 “ ℝ)) |
| 14 | 7, 13 | eqsstrd 4018 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 ⊆ [𝑥](◡𝑀 “ ℝ)) |
| 15 | 14 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ [𝑥](◡𝑀 “ ℝ)) |
| 16 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
| 17 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 18 | 16, 17 | elec 8791 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ [𝑥](◡𝑀 “ ℝ) ↔ 𝑥(◡𝑀 “ ℝ)𝑦) |
| 19 | 15, 18 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦 ∈ 𝑋) → 𝑥(◡𝑀 “ ℝ)𝑦) |
| 20 | 9 | xmeterval 24442 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (∞Met‘𝑋) → (𝑥(◡𝑀 “ ℝ)𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ))) |
| 21 | 20 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦 ∈ 𝑋) → (𝑥(◡𝑀 “ ℝ)𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ))) |
| 22 | 19, 21 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦 ∈ 𝑋) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)) |
| 23 | 22 | simp3d 1145 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦 ∈ 𝑋) → (𝑥𝑀𝑦) ∈ ℝ) |
| 24 | 23 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟))) → ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) ∈ ℝ) |
| 25 | 24 | rexlimdvaa 3156 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) ∈ ℝ)) |
| 26 | 25 | ralimdva 3167 |
. . . . . . . 8
⊢ (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) ∈ ℝ)) |
| 27 | 26 | impcom 407 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) ∈ ℝ) |
| 28 | | ffnov 7559 |
. . . . . . 7
⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) ∈ ℝ)) |
| 29 | 6, 27, 28 | sylanbrc 583 |
. . . . . 6
⊢
((∀𝑥 ∈
𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
| 30 | | ismet2 24343 |
. . . . . 6
⊢ (𝑀 ∈ (Met‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ 𝑀:(𝑋 × 𝑋)⟶ℝ)) |
| 31 | 3, 29, 30 | sylanbrc 583 |
. . . . 5
⊢
((∀𝑥 ∈
𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (Met‘𝑋)) |
| 32 | 31 | ex 412 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (∞Met‘𝑋) → 𝑀 ∈ (Met‘𝑋))) |
| 33 | 2, 32 | impbid2 226 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (∞Met‘𝑋))) |
| 34 | 33 | pm5.32ri 575 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
| 35 | 1, 34 | bitri 275 |
1
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |