Step | Hyp | Ref
| Expression |
1 | | isbnd 36696 |
. 2
β’ (π β (Bndβπ) β (π β (Metβπ) β§ βπ₯ β π βπ β β+ π = (π₯(ballβπ)π))) |
2 | | metxmet 23840 |
. . . 4
β’ (π β (Metβπ) β π β (βMetβπ)) |
3 | | simpr 486 |
. . . . . 6
β’
((βπ₯ β
π βπ β β+ π = (π₯(ballβπ)π) β§ π β (βMetβπ)) β π β (βMetβπ)) |
4 | | xmetf 23835 |
. . . . . . . 8
β’ (π β (βMetβπ) β π:(π Γ π)βΆβ*) |
5 | | ffn 6718 |
. . . . . . . 8
β’ (π:(π Γ π)βΆβ* β π Fn (π Γ π)) |
6 | 3, 4, 5 | 3syl 18 |
. . . . . . 7
β’
((βπ₯ β
π βπ β β+ π = (π₯(ballβπ)π) β§ π β (βMetβπ)) β π Fn (π Γ π)) |
7 | | simprr 772 |
. . . . . . . . . . . . . . . 16
β’ (((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β π = (π₯(ballβπ)π)) |
8 | | rpxr 12983 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β+
β π β
β*) |
9 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . 20
β’ (β‘π β β) = (β‘π β β) |
10 | 9 | blssec 23941 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β (βMetβπ) β§ π₯ β π β§ π β β*) β (π₯(ballβπ)π) β [π₯](β‘π β β)) |
11 | 10 | 3expa 1119 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β (βMetβπ) β§ π₯ β π) β§ π β β*) β (π₯(ballβπ)π) β [π₯](β‘π β β)) |
12 | 8, 11 | sylan2 594 |
. . . . . . . . . . . . . . . . 17
β’ (((π β (βMetβπ) β§ π₯ β π) β§ π β β+) β (π₯(ballβπ)π) β [π₯](β‘π β β)) |
13 | 12 | adantrr 716 |
. . . . . . . . . . . . . . . 16
β’ (((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β (π₯(ballβπ)π) β [π₯](β‘π β β)) |
14 | 7, 13 | eqsstrd 4021 |
. . . . . . . . . . . . . . 15
β’ (((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β π β [π₯](β‘π β β)) |
15 | 14 | sselda 3983 |
. . . . . . . . . . . . . 14
β’ ((((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β§ π¦ β π) β π¦ β [π₯](β‘π β β)) |
16 | | vex 3479 |
. . . . . . . . . . . . . . 15
β’ π¦ β V |
17 | | vex 3479 |
. . . . . . . . . . . . . . 15
β’ π₯ β V |
18 | 16, 17 | elec 8747 |
. . . . . . . . . . . . . 14
β’ (π¦ β [π₯](β‘π β β) β π₯(β‘π β β)π¦) |
19 | 15, 18 | sylib 217 |
. . . . . . . . . . . . 13
β’ ((((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β§ π¦ β π) β π₯(β‘π β β)π¦) |
20 | 9 | xmeterval 23938 |
. . . . . . . . . . . . . 14
β’ (π β (βMetβπ) β (π₯(β‘π β β)π¦ β (π₯ β π β§ π¦ β π β§ (π₯ππ¦) β β))) |
21 | 20 | ad3antrrr 729 |
. . . . . . . . . . . . 13
β’ ((((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β§ π¦ β π) β (π₯(β‘π β β)π¦ β (π₯ β π β§ π¦ β π β§ (π₯ππ¦) β β))) |
22 | 19, 21 | mpbid 231 |
. . . . . . . . . . . 12
β’ ((((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β§ π¦ β π) β (π₯ β π β§ π¦ β π β§ (π₯ππ¦) β β)) |
23 | 22 | simp3d 1145 |
. . . . . . . . . . 11
β’ ((((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β§ π¦ β π) β (π₯ππ¦) β β) |
24 | 23 | ralrimiva 3147 |
. . . . . . . . . 10
β’ (((π β (βMetβπ) β§ π₯ β π) β§ (π β β+ β§ π = (π₯(ballβπ)π))) β βπ¦ β π (π₯ππ¦) β β) |
25 | 24 | rexlimdvaa 3157 |
. . . . . . . . 9
β’ ((π β (βMetβπ) β§ π₯ β π) β (βπ β β+ π = (π₯(ballβπ)π) β βπ¦ β π (π₯ππ¦) β β)) |
26 | 25 | ralimdva 3168 |
. . . . . . . 8
β’ (π β (βMetβπ) β (βπ₯ β π βπ β β+ π = (π₯(ballβπ)π) β βπ₯ β π βπ¦ β π (π₯ππ¦) β β)) |
27 | 26 | impcom 409 |
. . . . . . 7
β’
((βπ₯ β
π βπ β β+ π = (π₯(ballβπ)π) β§ π β (βMetβπ)) β βπ₯ β π βπ¦ β π (π₯ππ¦) β β) |
28 | | ffnov 7535 |
. . . . . . 7
β’ (π:(π Γ π)βΆβ β (π Fn (π Γ π) β§ βπ₯ β π βπ¦ β π (π₯ππ¦) β β)) |
29 | 6, 27, 28 | sylanbrc 584 |
. . . . . 6
β’
((βπ₯ β
π βπ β β+ π = (π₯(ballβπ)π) β§ π β (βMetβπ)) β π:(π Γ π)βΆβ) |
30 | | ismet2 23839 |
. . . . . 6
β’ (π β (Metβπ) β (π β (βMetβπ) β§ π:(π Γ π)βΆβ)) |
31 | 3, 29, 30 | sylanbrc 584 |
. . . . 5
β’
((βπ₯ β
π βπ β β+ π = (π₯(ballβπ)π) β§ π β (βMetβπ)) β π β (Metβπ)) |
32 | 31 | ex 414 |
. . . 4
β’
(βπ₯ β
π βπ β β+ π = (π₯(ballβπ)π) β (π β (βMetβπ) β π β (Metβπ))) |
33 | 2, 32 | impbid2 225 |
. . 3
β’
(βπ₯ β
π βπ β β+ π = (π₯(ballβπ)π) β (π β (Metβπ) β π β (βMetβπ))) |
34 | 33 | pm5.32ri 577 |
. 2
β’ ((π β (Metβπ) β§ βπ₯ β π βπ β β+ π = (π₯(ballβπ)π)) β (π β (βMetβπ) β§ βπ₯ β π βπ β β+ π = (π₯(ballβπ)π))) |
35 | 1, 34 | bitri 275 |
1
β’ (π β (Bndβπ) β (π β (βMetβπ) β§ βπ₯ β π βπ β β+ π = (π₯(ballβπ)π))) |