Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbndx Structured version   Visualization version   GIF version

Theorem isbndx 37764
Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbndx (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbndx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isbnd 37762 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
2 metxmet 24238 . . . 4 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
3 simpr 484 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
4 xmetf 24233 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ*)
5 ffn 6656 . . . . . . . 8 (𝑀:(𝑋 × 𝑋)⟶ℝ*𝑀 Fn (𝑋 × 𝑋))
63, 4, 53syl 18 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 Fn (𝑋 × 𝑋))
7 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 = (𝑥(ball‘𝑀)𝑟))
8 rpxr 12921 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ ℝ) = (𝑀 “ ℝ)
109blssec 24339 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
11103expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
128, 11sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
1312adantrr 717 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
147, 13eqsstrd 3972 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 ⊆ [𝑥](𝑀 “ ℝ))
1514sselda 3937 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑦 ∈ [𝑥](𝑀 “ ℝ))
16 vex 3442 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 vex 3442 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1816, 17elec 8678 . . . . . . . . . . . . . 14 (𝑦 ∈ [𝑥](𝑀 “ ℝ) ↔ 𝑥(𝑀 “ ℝ)𝑦)
1915, 18sylib 218 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑥(𝑀 “ ℝ)𝑦)
209xmeterval 24336 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2120ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2219, 21mpbid 232 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ))
2322simp3d 1144 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
2423ralrimiva 3121 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
2524rexlimdvaa 3131 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2625ralimdva 3141 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2726impcom 407 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
28 ffnov 7479 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶ℝ ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
296, 27, 28sylanbrc 583 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
30 ismet2 24237 . . . . . 6 (𝑀 ∈ (Met‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ 𝑀:(𝑋 × 𝑋)⟶ℝ))
313, 29, 30sylanbrc 583 . . . . 5 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (Met‘𝑋))
3231ex 412 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (∞Met‘𝑋) → 𝑀 ∈ (Met‘𝑋)))
332, 32impbid2 226 . . 3 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (∞Met‘𝑋)))
3433pm5.32ri 575 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
351, 34bitri 275 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905   class class class wbr 5095   × cxp 5621  ccnv 5622  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  [cec 8630  cr 11027  *cxr 11167  +crp 12911  ∞Metcxmet 21264  Metcmet 21265  ballcbl 21266  Bndcbnd 37749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-ec 8634  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-2 12209  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-bnd 37761
This theorem is referenced by:  isbnd2  37765  blbnd  37769  ismtybndlem  37788
  Copyright terms: Public domain W3C validator