Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbndx Structured version   Visualization version   GIF version

Theorem isbndx 37806
Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbndx (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbndx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isbnd 37804 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
2 metxmet 24273 . . . 4 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
3 simpr 484 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
4 xmetf 24268 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ*)
5 ffn 6706 . . . . . . . 8 (𝑀:(𝑋 × 𝑋)⟶ℝ*𝑀 Fn (𝑋 × 𝑋))
63, 4, 53syl 18 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 Fn (𝑋 × 𝑋))
7 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 = (𝑥(ball‘𝑀)𝑟))
8 rpxr 13018 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ ℝ) = (𝑀 “ ℝ)
109blssec 24374 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
11103expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
128, 11sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
1312adantrr 717 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
147, 13eqsstrd 3993 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 ⊆ [𝑥](𝑀 “ ℝ))
1514sselda 3958 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑦 ∈ [𝑥](𝑀 “ ℝ))
16 vex 3463 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 vex 3463 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1816, 17elec 8765 . . . . . . . . . . . . . 14 (𝑦 ∈ [𝑥](𝑀 “ ℝ) ↔ 𝑥(𝑀 “ ℝ)𝑦)
1915, 18sylib 218 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑥(𝑀 “ ℝ)𝑦)
209xmeterval 24371 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2120ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2219, 21mpbid 232 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ))
2322simp3d 1144 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
2423ralrimiva 3132 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
2524rexlimdvaa 3142 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2625ralimdva 3152 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2726impcom 407 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
28 ffnov 7533 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶ℝ ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
296, 27, 28sylanbrc 583 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
30 ismet2 24272 . . . . . 6 (𝑀 ∈ (Met‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ 𝑀:(𝑋 × 𝑋)⟶ℝ))
313, 29, 30sylanbrc 583 . . . . 5 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (Met‘𝑋))
3231ex 412 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (∞Met‘𝑋) → 𝑀 ∈ (Met‘𝑋)))
332, 32impbid2 226 . . 3 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (∞Met‘𝑋)))
3433pm5.32ri 575 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
351, 34bitri 275 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   class class class wbr 5119   × cxp 5652  ccnv 5653  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  [cec 8717  cr 11128  *cxr 11268  +crp 13008  ∞Metcxmet 21300  Metcmet 21301  ballcbl 21302  Bndcbnd 37791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-ec 8721  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-2 12303  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-bnd 37803
This theorem is referenced by:  isbnd2  37807  blbnd  37811  ismtybndlem  37830
  Copyright terms: Public domain W3C validator