Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbndx Structured version   Visualization version   GIF version

Theorem isbndx 35984
Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbndx (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbndx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isbnd 35982 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
2 metxmet 23532 . . . 4 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
3 simpr 486 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
4 xmetf 23527 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ*)
5 ffn 6630 . . . . . . . 8 (𝑀:(𝑋 × 𝑋)⟶ℝ*𝑀 Fn (𝑋 × 𝑋))
63, 4, 53syl 18 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 Fn (𝑋 × 𝑋))
7 simprr 771 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 = (𝑥(ball‘𝑀)𝑟))
8 rpxr 12785 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ ℝ) = (𝑀 “ ℝ)
109blssec 23633 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
11103expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
128, 11sylan2 594 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
1312adantrr 715 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → (𝑥(ball‘𝑀)𝑟) ⊆ [𝑥](𝑀 “ ℝ))
147, 13eqsstrd 3964 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → 𝑋 ⊆ [𝑥](𝑀 “ ℝ))
1514sselda 3926 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑦 ∈ [𝑥](𝑀 “ ℝ))
16 vex 3441 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 vex 3441 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1816, 17elec 8573 . . . . . . . . . . . . . 14 (𝑦 ∈ [𝑥](𝑀 “ ℝ) ↔ 𝑥(𝑀 “ ℝ)𝑦)
1915, 18sylib 217 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → 𝑥(𝑀 “ ℝ)𝑦)
209xmeterval 23630 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2120ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥(𝑀 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ)))
2219, 21mpbid 231 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝑀𝑦) ∈ ℝ))
2322simp3d 1144 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
2423ralrimiva 3140 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)𝑟))) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
2524rexlimdvaa 3150 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2625ralimdva 3161 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
2726impcom 409 . . . . . . 7 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ)
28 ffnov 7433 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶ℝ ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ∈ ℝ))
296, 27, 28sylanbrc 584 . . . . . 6 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
30 ismet2 23531 . . . . . 6 (𝑀 ∈ (Met‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ 𝑀:(𝑋 × 𝑋)⟶ℝ))
313, 29, 30sylanbrc 584 . . . . 5 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑀 ∈ (∞Met‘𝑋)) → 𝑀 ∈ (Met‘𝑋))
3231ex 414 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (∞Met‘𝑋) → 𝑀 ∈ (Met‘𝑋)))
332, 32impbid2 225 . . 3 (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (∞Met‘𝑋)))
3433pm5.32ri 577 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
351, 34bitri 275 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  wrex 3071  wss 3892   class class class wbr 5081   × cxp 5598  ccnv 5599  cima 5603   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  [cec 8527  cr 10916  *cxr 11054  +crp 12776  ∞Metcxmet 20627  Metcmet 20628  ballcbl 20629  Bndcbnd 35969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-er 8529  df-ec 8531  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-2 12082  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-bnd 35981
This theorem is referenced by:  isbnd2  35985  blbnd  35989  ismtybndlem  36008
  Copyright terms: Public domain W3C validator