MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconncomp Structured version   Visualization version   GIF version

Theorem tgpconncomp 24067
Description: The identity component, the connected component containing the identity element, is a closed (conncompcld 23388) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconncomp.x 𝑋 = (Base‘𝐺)
tgpconncomp.z 0 = (0g𝐺)
tgpconncomp.j 𝐽 = (TopOpen‘𝐺)
tgpconncomp.s 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
tgpconncomp (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺))
Distinct variable groups:   𝑥, 0   𝑥,𝐽   𝑥,𝐺   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem tgpconncomp
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpconncomp.s . . . . 5 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2 ssrab2 4060 . . . . . 6 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
3 sspwuni 5080 . . . . . 6 ({𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
42, 3mpbi 230 . . . . 5 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
51, 4eqsstri 4010 . . . 4 𝑆𝑋
65a1i 11 . . 3 (𝐺 ∈ TopGrp → 𝑆𝑋)
7 tgpconncomp.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
8 tgpconncomp.x . . . . . 6 𝑋 = (Base‘𝐺)
97, 8tgptopon 24036 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
10 tgpgrp 24032 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
11 tgpconncomp.z . . . . . . 7 0 = (0g𝐺)
128, 11grpidcl 18952 . . . . . 6 (𝐺 ∈ Grp → 0𝑋)
1310, 12syl 17 . . . . 5 (𝐺 ∈ TopGrp → 0𝑋)
141conncompid 23385 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → 0𝑆)
159, 13, 14syl2anc 584 . . . 4 (𝐺 ∈ TopGrp → 0𝑆)
1615ne0d 4322 . . 3 (𝐺 ∈ TopGrp → 𝑆 ≠ ∅)
17 df-ima 5678 . . . . . . . 8 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) = ran ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆)
18 resmpt 6035 . . . . . . . . . 10 (𝑆𝑋 → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
195, 18ax-mp 5 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
2019rneqi 5928 . . . . . . . 8 ran ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
2117, 20eqtri 2757 . . . . . . 7 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) = ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
22 imassrn 6069 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ ran (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧))
2310adantr 480 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
2423adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝐺 ∈ Grp)
256sselda 3963 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑦𝑋)
2625adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑦𝑋)
27 simpr 484 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑧𝑋)
28 eqid 2734 . . . . . . . . . . . . 13 (-g𝐺) = (-g𝐺)
298, 28grpsubcl 19007 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(-g𝐺)𝑧) ∈ 𝑋)
3024, 26, 27, 29syl3anc 1372 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦(-g𝐺)𝑧) ∈ 𝑋)
3130fmpttd 7115 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)):𝑋𝑋)
3231frnd 6724 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ran (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑋)
3322, 32sstrid 3975 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑋)
348, 11, 28grpsubid 19011 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(-g𝐺)𝑦) = 0 )
3523, 25, 34syl2anc 584 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑦(-g𝐺)𝑦) = 0 )
36 simpr 484 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑦𝑆)
37 ovex 7446 . . . . . . . . . . 11 (𝑦(-g𝐺)𝑦) ∈ V
38 eqid 2734 . . . . . . . . . . . 12 (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
39 oveq2 7421 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑦(-g𝐺)𝑧) = (𝑦(-g𝐺)𝑦))
4038, 39elrnmpt1s 5950 . . . . . . . . . . 11 ((𝑦𝑆 ∧ (𝑦(-g𝐺)𝑦) ∈ V) → (𝑦(-g𝐺)𝑦) ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4136, 37, 40sylancl 586 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑦(-g𝐺)𝑦) ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4235, 41eqeltrrd 2834 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 0 ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4342, 21eleqtrrdi 2844 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 0 ∈ ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆))
44 eqid 2734 . . . . . . . . 9 𝐽 = 𝐽
45 eqid 2734 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
46 eqid 2734 . . . . . . . . . . . . . . 15 (invg𝐺) = (invg𝐺)
478, 45, 46, 28grpsubval 18972 . . . . . . . . . . . . . 14 ((𝑦𝑋𝑧𝑋) → (𝑦(-g𝐺)𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
4825, 47sylan 580 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦(-g𝐺)𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
4948mpteq2dva 5222 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)((invg𝐺)‘𝑧))))
508, 46grpinvcl 18974 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
5123, 50sylan 580 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
528, 46grpinvf 18973 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (invg𝐺):𝑋𝑋)
5310, 52syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ TopGrp → (invg𝐺):𝑋𝑋)
5453adantr 480 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺):𝑋𝑋)
5554feqmptd 6957 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺) = (𝑧𝑋 ↦ ((invg𝐺)‘𝑧)))
56 eqidd 2735 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) = (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)))
57 oveq2 7421 . . . . . . . . . . . . 13 (𝑤 = ((invg𝐺)‘𝑧) → (𝑦(+g𝐺)𝑤) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
5851, 55, 56, 57fmptco 7129 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)((invg𝐺)‘𝑧))))
5949, 58eqtr4d 2772 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) = ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)))
607, 46grpinvhmeo 24040 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽Homeo𝐽))
6160adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺) ∈ (𝐽Homeo𝐽))
62 eqid 2734 . . . . . . . . . . . . . 14 (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) = (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤))
6362, 8, 45, 7tgplacthmeo 24057 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑋) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽))
6425, 63syldan 591 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽))
65 hmeoco 23726 . . . . . . . . . . . 12 (((invg𝐺) ∈ (𝐽Homeo𝐽) ∧ (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽)) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) ∈ (𝐽Homeo𝐽))
6661, 64, 65syl2anc 584 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) ∈ (𝐽Homeo𝐽))
6759, 66eqeltrd 2833 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
68 hmeocn 23714 . . . . . . . . . 10 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
6967, 68syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
70 toponuni 22868 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
719, 70syl 17 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝑋 = 𝐽)
7271adantr 480 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑋 = 𝐽)
735, 72sseqtrid 4006 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑆 𝐽)
741conncompconn 23386 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → (𝐽t 𝑆) ∈ Conn)
759, 13, 74syl2anc 584 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (𝐽t 𝑆) ∈ Conn)
7675adantr 480 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝐽t 𝑆) ∈ Conn)
7744, 69, 73, 76connima 23379 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝐽t ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆)) ∈ Conn)
781conncompss 23387 . . . . . . . 8 ((((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑋0 ∈ ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ∧ (𝐽t ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆)) ∈ Conn) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑆)
7933, 43, 77, 78syl3anc 1372 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑆)
8021, 79eqsstrrid 4003 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆)
81 ovex 7446 . . . . . . . 8 (𝑦(-g𝐺)𝑧) ∈ V
8281, 38fnmpti 6691 . . . . . . 7 (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) Fn 𝑆
83 df-f 6545 . . . . . . 7 ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆 ↔ ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) Fn 𝑆 ∧ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆))
8482, 83mpbiran 709 . . . . . 6 ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆 ↔ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆)
8580, 84sylibr 234 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆)
8638fmpt 7110 . . . . 5 (∀𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆 ↔ (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆)
8785, 86sylibr 234 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ∀𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)
8887ralrimiva 3133 . . 3 (𝐺 ∈ TopGrp → ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)
898, 28issubg4 19132 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝑋𝑆 ≠ ∅ ∧ ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)))
9010, 89syl 17 . . 3 (𝐺 ∈ TopGrp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝑋𝑆 ≠ ∅ ∧ ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)))
916, 16, 88, 90mpbir3and 1342 . 2 (𝐺 ∈ TopGrp → 𝑆 ∈ (SubGrp‘𝐺))
9210adantr 480 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝐺 ∈ Grp)
93 eqid 2734 . . . . . . . . . . 11 (oppg𝐺) = (oppg𝐺)
9493, 46oppginv 19346 . . . . . . . . . 10 (𝐺 ∈ Grp → (invg𝐺) = (invg‘(oppg𝐺)))
9592, 94syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (invg𝐺) = (invg‘(oppg𝐺)))
9695fveq1d 6888 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = ((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦)))
97 simprll 778 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝑦𝑋)
988, 46grpinvinv 18992 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = 𝑦)
9992, 97, 98syl2anc 584 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = 𝑦)
10096, 99eqtr3d 2771 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦)) = 𝑦)
101100oveq1d 7428 . . . . . 6 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) = (𝑦(+g‘(oppg𝐺))𝑧))
102 eqid 2734 . . . . . . 7 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
10345, 93, 102oppgplus 19336 . . . . . 6 (𝑦(+g‘(oppg𝐺))𝑧) = (𝑧(+g𝐺)𝑦)
104101, 103eqtrdi 2785 . . . . 5 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) = (𝑧(+g𝐺)𝑦))
1058, 46grpinvcl 18974 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
10692, 97, 105syl2anc 584 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
107 simprlr 779 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝑧𝑋)
10899oveq1d 7428 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
109 simprr 772 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
110108, 109eqeltrd 2833 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)
111 eqid 2734 . . . . . . . . . . 11 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
1128, 46, 45, 111eqgval 19164 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑆𝑋) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)))
11392, 5, 112sylancl 586 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)))
114106, 107, 110, 113mpbir3and 1342 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧)
1158, 11, 7, 1, 111tgpconncompeqg 24066 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ ((invg𝐺)‘𝑦) ∈ 𝑋) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
116106, 115syldan 591 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
11793oppgtgp 24052 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → (oppg𝐺) ∈ TopGrp)
118117adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (oppg𝐺) ∈ TopGrp)
11993, 8oppgbas 19338 . . . . . . . . . . . . 13 𝑋 = (Base‘(oppg𝐺))
12093, 11oppgid 19343 . . . . . . . . . . . . 13 0 = (0g‘(oppg𝐺))
12193, 7oppgtopn 19340 . . . . . . . . . . . . 13 𝐽 = (TopOpen‘(oppg𝐺))
122 eqid 2734 . . . . . . . . . . . . 13 ((oppg𝐺) ~QG 𝑆) = ((oppg𝐺) ~QG 𝑆)
123119, 120, 121, 1, 122tgpconncompeqg 24066 . . . . . . . . . . . 12 (((oppg𝐺) ∈ TopGrp ∧ ((invg𝐺)‘𝑦) ∈ 𝑋) → [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
124118, 106, 123syl2anc 584 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
125116, 124eqtr4d 2772 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆))
126125eleq2d 2819 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑧 ∈ [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) ↔ 𝑧 ∈ [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆)))
127 vex 3467 . . . . . . . . . 10 𝑧 ∈ V
128 fvex 6899 . . . . . . . . . 10 ((invg𝐺)‘𝑦) ∈ V
129127, 128elec 8773 . . . . . . . . 9 (𝑧 ∈ [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) ↔ ((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧)
130127, 128elec 8773 . . . . . . . . 9 (𝑧 ∈ [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) ↔ ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧)
131126, 129, 1303bitr3g 313 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧))
132114, 131mpbid 232 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧)
133 eqid 2734 . . . . . . . . 9 (invg‘(oppg𝐺)) = (invg‘(oppg𝐺))
134119, 133, 102, 122eqgval 19164 . . . . . . . 8 (((oppg𝐺) ∈ TopGrp ∧ 𝑆𝑋) → (((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)))
135118, 5, 134sylancl 586 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)))
136132, 135mpbid 232 . . . . . 6 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆))
137136simp3d 1144 . . . . 5 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)
138104, 137eqeltrrd 2834 . . . 4 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑧(+g𝐺)𝑦) ∈ 𝑆)
139138expr 456 . . 3 ((𝐺 ∈ TopGrp ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆))
140139ralrimivva 3189 . 2 (𝐺 ∈ TopGrp → ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆))
1418, 45isnsg2 19143 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆)))
14291, 140, 141sylanbrc 583 1 (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  {crab 3419  Vcvv 3463  wss 3931  c0 4313  𝒫 cpw 4580   cuni 4887   class class class wbr 5123  cmpt 5205  ran crn 5666  cres 5667  cima 5668  ccom 5669   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  [cec 8725  Basecbs 17229  +gcplusg 17273  t crest 17436  TopOpenctopn 17437  0gc0g 17455  Grpcgrp 18920  invgcminusg 18921  -gcsg 18922  SubGrpcsubg 19107  NrmSGrpcnsg 19108   ~QG cqg 19109  oppgcoppg 19332  TopOnctopon 22864   Cn ccn 23178  Conncconn 23365  Homeochmeo 23707  TopGrpctgp 24025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-ec 8729  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fi 9433  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-tset 17292  df-rest 17438  df-topn 17439  df-0g 17457  df-topgen 17459  df-plusf 18621  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-nsg 19111  df-eqg 19112  df-oppg 19333  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-cn 23181  df-cnp 23182  df-conn 23366  df-tx 23516  df-hmeo 23709  df-tmd 24026  df-tgp 24027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator