MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconncomp Structured version   Visualization version   GIF version

Theorem tgpconncomp 24121
Description: The identity component, the connected component containing the identity element, is a closed (conncompcld 23442) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconncomp.x 𝑋 = (Base‘𝐺)
tgpconncomp.z 0 = (0g𝐺)
tgpconncomp.j 𝐽 = (TopOpen‘𝐺)
tgpconncomp.s 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
tgpconncomp (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺))
Distinct variable groups:   𝑥, 0   𝑥,𝐽   𝑥,𝐺   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem tgpconncomp
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpconncomp.s . . . . 5 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2 ssrab2 4080 . . . . . 6 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
3 sspwuni 5100 . . . . . 6 ({𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
42, 3mpbi 230 . . . . 5 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
51, 4eqsstri 4030 . . . 4 𝑆𝑋
65a1i 11 . . 3 (𝐺 ∈ TopGrp → 𝑆𝑋)
7 tgpconncomp.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
8 tgpconncomp.x . . . . . 6 𝑋 = (Base‘𝐺)
97, 8tgptopon 24090 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
10 tgpgrp 24086 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
11 tgpconncomp.z . . . . . . 7 0 = (0g𝐺)
128, 11grpidcl 18983 . . . . . 6 (𝐺 ∈ Grp → 0𝑋)
1310, 12syl 17 . . . . 5 (𝐺 ∈ TopGrp → 0𝑋)
141conncompid 23439 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → 0𝑆)
159, 13, 14syl2anc 584 . . . 4 (𝐺 ∈ TopGrp → 0𝑆)
1615ne0d 4342 . . 3 (𝐺 ∈ TopGrp → 𝑆 ≠ ∅)
17 df-ima 5698 . . . . . . . 8 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) = ran ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆)
18 resmpt 6055 . . . . . . . . . 10 (𝑆𝑋 → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
195, 18ax-mp 5 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
2019rneqi 5948 . . . . . . . 8 ran ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
2117, 20eqtri 2765 . . . . . . 7 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) = ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
22 imassrn 6089 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ ran (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧))
2310adantr 480 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
2423adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝐺 ∈ Grp)
256sselda 3983 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑦𝑋)
2625adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑦𝑋)
27 simpr 484 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑧𝑋)
28 eqid 2737 . . . . . . . . . . . . 13 (-g𝐺) = (-g𝐺)
298, 28grpsubcl 19038 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(-g𝐺)𝑧) ∈ 𝑋)
3024, 26, 27, 29syl3anc 1373 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦(-g𝐺)𝑧) ∈ 𝑋)
3130fmpttd 7135 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)):𝑋𝑋)
3231frnd 6744 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ran (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑋)
3322, 32sstrid 3995 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑋)
348, 11, 28grpsubid 19042 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(-g𝐺)𝑦) = 0 )
3523, 25, 34syl2anc 584 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑦(-g𝐺)𝑦) = 0 )
36 simpr 484 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑦𝑆)
37 ovex 7464 . . . . . . . . . . 11 (𝑦(-g𝐺)𝑦) ∈ V
38 eqid 2737 . . . . . . . . . . . 12 (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
39 oveq2 7439 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑦(-g𝐺)𝑧) = (𝑦(-g𝐺)𝑦))
4038, 39elrnmpt1s 5970 . . . . . . . . . . 11 ((𝑦𝑆 ∧ (𝑦(-g𝐺)𝑦) ∈ V) → (𝑦(-g𝐺)𝑦) ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4136, 37, 40sylancl 586 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑦(-g𝐺)𝑦) ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4235, 41eqeltrrd 2842 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 0 ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4342, 21eleqtrrdi 2852 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 0 ∈ ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆))
44 eqid 2737 . . . . . . . . 9 𝐽 = 𝐽
45 eqid 2737 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
46 eqid 2737 . . . . . . . . . . . . . . 15 (invg𝐺) = (invg𝐺)
478, 45, 46, 28grpsubval 19003 . . . . . . . . . . . . . 14 ((𝑦𝑋𝑧𝑋) → (𝑦(-g𝐺)𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
4825, 47sylan 580 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦(-g𝐺)𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
4948mpteq2dva 5242 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)((invg𝐺)‘𝑧))))
508, 46grpinvcl 19005 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
5123, 50sylan 580 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
528, 46grpinvf 19004 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (invg𝐺):𝑋𝑋)
5310, 52syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ TopGrp → (invg𝐺):𝑋𝑋)
5453adantr 480 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺):𝑋𝑋)
5554feqmptd 6977 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺) = (𝑧𝑋 ↦ ((invg𝐺)‘𝑧)))
56 eqidd 2738 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) = (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)))
57 oveq2 7439 . . . . . . . . . . . . 13 (𝑤 = ((invg𝐺)‘𝑧) → (𝑦(+g𝐺)𝑤) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
5851, 55, 56, 57fmptco 7149 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)((invg𝐺)‘𝑧))))
5949, 58eqtr4d 2780 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) = ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)))
607, 46grpinvhmeo 24094 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽Homeo𝐽))
6160adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺) ∈ (𝐽Homeo𝐽))
62 eqid 2737 . . . . . . . . . . . . . 14 (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) = (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤))
6362, 8, 45, 7tgplacthmeo 24111 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑋) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽))
6425, 63syldan 591 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽))
65 hmeoco 23780 . . . . . . . . . . . 12 (((invg𝐺) ∈ (𝐽Homeo𝐽) ∧ (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽)) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) ∈ (𝐽Homeo𝐽))
6661, 64, 65syl2anc 584 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) ∈ (𝐽Homeo𝐽))
6759, 66eqeltrd 2841 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
68 hmeocn 23768 . . . . . . . . . 10 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
6967, 68syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
70 toponuni 22920 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
719, 70syl 17 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝑋 = 𝐽)
7271adantr 480 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑋 = 𝐽)
735, 72sseqtrid 4026 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑆 𝐽)
741conncompconn 23440 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → (𝐽t 𝑆) ∈ Conn)
759, 13, 74syl2anc 584 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (𝐽t 𝑆) ∈ Conn)
7675adantr 480 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝐽t 𝑆) ∈ Conn)
7744, 69, 73, 76connima 23433 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝐽t ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆)) ∈ Conn)
781conncompss 23441 . . . . . . . 8 ((((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑋0 ∈ ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ∧ (𝐽t ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆)) ∈ Conn) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑆)
7933, 43, 77, 78syl3anc 1373 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑆)
8021, 79eqsstrrid 4023 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆)
81 ovex 7464 . . . . . . . 8 (𝑦(-g𝐺)𝑧) ∈ V
8281, 38fnmpti 6711 . . . . . . 7 (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) Fn 𝑆
83 df-f 6565 . . . . . . 7 ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆 ↔ ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) Fn 𝑆 ∧ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆))
8482, 83mpbiran 709 . . . . . 6 ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆 ↔ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆)
8580, 84sylibr 234 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆)
8638fmpt 7130 . . . . 5 (∀𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆 ↔ (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆)
8785, 86sylibr 234 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ∀𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)
8887ralrimiva 3146 . . 3 (𝐺 ∈ TopGrp → ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)
898, 28issubg4 19163 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝑋𝑆 ≠ ∅ ∧ ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)))
9010, 89syl 17 . . 3 (𝐺 ∈ TopGrp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝑋𝑆 ≠ ∅ ∧ ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)))
916, 16, 88, 90mpbir3and 1343 . 2 (𝐺 ∈ TopGrp → 𝑆 ∈ (SubGrp‘𝐺))
9210adantr 480 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝐺 ∈ Grp)
93 eqid 2737 . . . . . . . . . . 11 (oppg𝐺) = (oppg𝐺)
9493, 46oppginv 19378 . . . . . . . . . 10 (𝐺 ∈ Grp → (invg𝐺) = (invg‘(oppg𝐺)))
9592, 94syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (invg𝐺) = (invg‘(oppg𝐺)))
9695fveq1d 6908 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = ((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦)))
97 simprll 779 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝑦𝑋)
988, 46grpinvinv 19023 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = 𝑦)
9992, 97, 98syl2anc 584 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = 𝑦)
10096, 99eqtr3d 2779 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦)) = 𝑦)
101100oveq1d 7446 . . . . . 6 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) = (𝑦(+g‘(oppg𝐺))𝑧))
102 eqid 2737 . . . . . . 7 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
10345, 93, 102oppgplus 19367 . . . . . 6 (𝑦(+g‘(oppg𝐺))𝑧) = (𝑧(+g𝐺)𝑦)
104101, 103eqtrdi 2793 . . . . 5 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) = (𝑧(+g𝐺)𝑦))
1058, 46grpinvcl 19005 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
10692, 97, 105syl2anc 584 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
107 simprlr 780 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝑧𝑋)
10899oveq1d 7446 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
109 simprr 773 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
110108, 109eqeltrd 2841 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)
111 eqid 2737 . . . . . . . . . . 11 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
1128, 46, 45, 111eqgval 19195 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑆𝑋) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)))
11392, 5, 112sylancl 586 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)))
114106, 107, 110, 113mpbir3and 1343 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧)
1158, 11, 7, 1, 111tgpconncompeqg 24120 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ ((invg𝐺)‘𝑦) ∈ 𝑋) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
116106, 115syldan 591 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
11793oppgtgp 24106 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → (oppg𝐺) ∈ TopGrp)
118117adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (oppg𝐺) ∈ TopGrp)
11993, 8oppgbas 19370 . . . . . . . . . . . . 13 𝑋 = (Base‘(oppg𝐺))
12093, 11oppgid 19375 . . . . . . . . . . . . 13 0 = (0g‘(oppg𝐺))
12193, 7oppgtopn 19372 . . . . . . . . . . . . 13 𝐽 = (TopOpen‘(oppg𝐺))
122 eqid 2737 . . . . . . . . . . . . 13 ((oppg𝐺) ~QG 𝑆) = ((oppg𝐺) ~QG 𝑆)
123119, 120, 121, 1, 122tgpconncompeqg 24120 . . . . . . . . . . . 12 (((oppg𝐺) ∈ TopGrp ∧ ((invg𝐺)‘𝑦) ∈ 𝑋) → [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
124118, 106, 123syl2anc 584 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
125116, 124eqtr4d 2780 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆))
126125eleq2d 2827 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑧 ∈ [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) ↔ 𝑧 ∈ [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆)))
127 vex 3484 . . . . . . . . . 10 𝑧 ∈ V
128 fvex 6919 . . . . . . . . . 10 ((invg𝐺)‘𝑦) ∈ V
129127, 128elec 8791 . . . . . . . . 9 (𝑧 ∈ [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) ↔ ((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧)
130127, 128elec 8791 . . . . . . . . 9 (𝑧 ∈ [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) ↔ ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧)
131126, 129, 1303bitr3g 313 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧))
132114, 131mpbid 232 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧)
133 eqid 2737 . . . . . . . . 9 (invg‘(oppg𝐺)) = (invg‘(oppg𝐺))
134119, 133, 102, 122eqgval 19195 . . . . . . . 8 (((oppg𝐺) ∈ TopGrp ∧ 𝑆𝑋) → (((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)))
135118, 5, 134sylancl 586 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)))
136132, 135mpbid 232 . . . . . 6 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆))
137136simp3d 1145 . . . . 5 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)
138104, 137eqeltrrd 2842 . . . 4 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑧(+g𝐺)𝑦) ∈ 𝑆)
139138expr 456 . . 3 ((𝐺 ∈ TopGrp ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆))
140139ralrimivva 3202 . 2 (𝐺 ∈ TopGrp → ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆))
1418, 45isnsg2 19174 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆)))
14291, 140, 141sylanbrc 583 1 (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  wss 3951  c0 4333  𝒫 cpw 4600   cuni 4907   class class class wbr 5143  cmpt 5225  ran crn 5686  cres 5687  cima 5688  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  [cec 8743  Basecbs 17247  +gcplusg 17297  t crest 17465  TopOpenctopn 17466  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  -gcsg 18953  SubGrpcsubg 19138  NrmSGrpcnsg 19139   ~QG cqg 19140  oppgcoppg 19363  TopOnctopon 22916   Cn ccn 23232  Conncconn 23419  Homeochmeo 23761  TopGrpctgp 24079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-rest 17467  df-topn 17468  df-0g 17486  df-topgen 17488  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-nsg 19142  df-eqg 19143  df-oppg 19364  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-conn 23420  df-tx 23570  df-hmeo 23763  df-tmd 24080  df-tgp 24081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator