![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elnlfn | Structured version Visualization version GIF version |
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnlfn | ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlfnval 31910 | . . . . . 6 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | |
2 | cnvimass 6102 | . . . . . 6 ⊢ (◡𝑇 “ {0}) ⊆ dom 𝑇 | |
3 | 1, 2 | eqsstrdi 4050 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇) |
4 | fdm 6746 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ) | |
5 | 3, 4 | sseqtrd 4036 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ) |
6 | 5 | sseld 3994 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ)) |
7 | 6 | pm4.71rd 562 | . 2 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)))) |
8 | 1 | eleq2d 2825 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
10 | ffn 6737 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ) | |
11 | eleq1 2827 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) | |
12 | fveqeq2 6916 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) = 0 ↔ (𝑇‘𝐴) = 0)) | |
13 | 11, 12 | bibi12d 345 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0) ↔ (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
14 | 13 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)))) |
15 | 0cn 11251 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
16 | vex 3482 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
17 | 16 | eliniseg 6115 | . . . . . . . . 9 ⊢ (0 ∈ ℂ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0)) |
18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0) |
19 | fnbrfvb 6960 | . . . . . . . 8 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = 0 ↔ 𝑥𝑇0)) | |
20 | 18, 19 | bitr4id 290 | . . . . . . 7 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) |
21 | 20 | expcom 413 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0))) |
22 | 14, 21 | vtoclga 3577 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
23 | 10, 22 | mpan9 506 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)) |
24 | 9, 23 | bitrd 279 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇‘𝐴) = 0)) |
25 | 24 | pm5.32da 579 | . 2 ⊢ (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
26 | 7, 25 | bitrd 279 | 1 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {csn 4631 class class class wbr 5148 ◡ccnv 5688 dom cdm 5689 “ cima 5692 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 ℂcc 11151 0cc0 11153 ℋchba 30948 nullcnl 30981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 ax-hilex 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-nlfn 31875 |
This theorem is referenced by: elnlfn2 31958 nlelshi 32089 nlelchi 32090 riesz3i 32091 |
Copyright terms: Public domain | W3C validator |