![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elnlfn | Structured version Visualization version GIF version |
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnlfn | ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlfnval 29349 | . . . . . 6 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | |
2 | cnvimass 5825 | . . . . . 6 ⊢ (◡𝑇 “ {0}) ⊆ dom 𝑇 | |
3 | 1, 2 | syl6eqss 3942 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇) |
4 | fdm 6390 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ) | |
5 | 3, 4 | sseqtrd 3928 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ) |
6 | 5 | sseld 3888 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ)) |
7 | 6 | pm4.71rd 563 | . 2 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)))) |
8 | 1 | eleq2d 2868 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
10 | ffn 6382 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ) | |
11 | eleq1 2870 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) | |
12 | fveqeq2 6547 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) = 0 ↔ (𝑇‘𝐴) = 0)) | |
13 | 11, 12 | bibi12d 347 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0) ↔ (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
14 | 13 | imbi2d 342 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)))) |
15 | fnbrfvb 6586 | . . . . . . . 8 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = 0 ↔ 𝑥𝑇0)) | |
16 | 0cn 10479 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
17 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
18 | 17 | eliniseg 5834 | . . . . . . . . 9 ⊢ (0 ∈ ℂ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0)) |
19 | 16, 18 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0) |
20 | 15, 19 | syl6rbbr 291 | . . . . . . 7 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) |
21 | 20 | expcom 414 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0))) |
22 | 14, 21 | vtoclga 3517 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
23 | 10, 22 | mpan9 507 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)) |
24 | 9, 23 | bitrd 280 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇‘𝐴) = 0)) |
25 | 24 | pm5.32da 579 | . 2 ⊢ (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
26 | 7, 25 | bitrd 280 | 1 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 {csn 4472 class class class wbr 4962 ◡ccnv 5442 dom cdm 5443 “ cima 5446 Fn wfn 6220 ⟶wf 6221 ‘cfv 6225 ℂcc 10381 0cc0 10383 ℋchba 28387 nullcnl 28420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-mulcl 10445 ax-i2m1 10451 ax-hilex 28467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-map 8258 df-nlfn 29314 |
This theorem is referenced by: elnlfn2 29397 nlelshi 29528 nlelchi 29529 riesz3i 29530 |
Copyright terms: Public domain | W3C validator |