Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > elnlfn | Structured version Visualization version GIF version |
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnlfn | ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlfnval 30243 | . . . . . 6 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | |
2 | cnvimass 5989 | . . . . . 6 ⊢ (◡𝑇 “ {0}) ⊆ dom 𝑇 | |
3 | 1, 2 | eqsstrdi 3975 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇) |
4 | fdm 6609 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ) | |
5 | 3, 4 | sseqtrd 3961 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ) |
6 | 5 | sseld 3920 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ)) |
7 | 6 | pm4.71rd 563 | . 2 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)))) |
8 | 1 | eleq2d 2824 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
10 | ffn 6600 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ) | |
11 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) | |
12 | fveqeq2 6783 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) = 0 ↔ (𝑇‘𝐴) = 0)) | |
13 | 11, 12 | bibi12d 346 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0) ↔ (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
14 | 13 | imbi2d 341 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)))) |
15 | 0cn 10967 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
16 | vex 3436 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
17 | 16 | eliniseg 6002 | . . . . . . . . 9 ⊢ (0 ∈ ℂ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0)) |
18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0) |
19 | fnbrfvb 6822 | . . . . . . . 8 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = 0 ↔ 𝑥𝑇0)) | |
20 | 18, 19 | bitr4id 290 | . . . . . . 7 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) |
21 | 20 | expcom 414 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0))) |
22 | 14, 21 | vtoclga 3513 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
23 | 10, 22 | mpan9 507 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)) |
24 | 9, 23 | bitrd 278 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇‘𝐴) = 0)) |
25 | 24 | pm5.32da 579 | . 2 ⊢ (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
26 | 7, 25 | bitrd 278 | 1 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 class class class wbr 5074 ◡ccnv 5588 dom cdm 5589 “ cima 5592 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 ℂcc 10869 0cc0 10871 ℋchba 29281 nullcnl 29314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-nlfn 30208 |
This theorem is referenced by: elnlfn2 30291 nlelshi 30422 nlelchi 30423 riesz3i 30424 |
Copyright terms: Public domain | W3C validator |