Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > elnlfn | Structured version Visualization version GIF version |
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnlfn | ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlfnval 30144 | . . . . . 6 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | |
2 | cnvimass 5978 | . . . . . 6 ⊢ (◡𝑇 “ {0}) ⊆ dom 𝑇 | |
3 | 1, 2 | eqsstrdi 3971 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇) |
4 | fdm 6593 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ) | |
5 | 3, 4 | sseqtrd 3957 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ) |
6 | 5 | sseld 3916 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ)) |
7 | 6 | pm4.71rd 562 | . 2 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)))) |
8 | 1 | eleq2d 2824 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
10 | ffn 6584 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ) | |
11 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) | |
12 | fveqeq2 6765 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) = 0 ↔ (𝑇‘𝐴) = 0)) | |
13 | 11, 12 | bibi12d 345 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0) ↔ (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
14 | 13 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)))) |
15 | 0cn 10898 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
16 | vex 3426 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
17 | 16 | eliniseg 5991 | . . . . . . . . 9 ⊢ (0 ∈ ℂ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0)) |
18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0) |
19 | fnbrfvb 6804 | . . . . . . . 8 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = 0 ↔ 𝑥𝑇0)) | |
20 | 18, 19 | bitr4id 289 | . . . . . . 7 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) |
21 | 20 | expcom 413 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0))) |
22 | 14, 21 | vtoclga 3503 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
23 | 10, 22 | mpan9 506 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)) |
24 | 9, 23 | bitrd 278 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇‘𝐴) = 0)) |
25 | 24 | pm5.32da 578 | . 2 ⊢ (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
26 | 7, 25 | bitrd 278 | 1 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ℂcc 10800 0cc0 10802 ℋchba 29182 nullcnl 29215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-nlfn 30109 |
This theorem is referenced by: elnlfn2 30192 nlelshi 30323 nlelchi 30324 riesz3i 30325 |
Copyright terms: Public domain | W3C validator |