Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > elnlfn | Structured version Visualization version GIF version |
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnlfn | ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlfnval 29763 | . . . . . 6 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | |
2 | cnvimass 5921 | . . . . . 6 ⊢ (◡𝑇 “ {0}) ⊆ dom 𝑇 | |
3 | 1, 2 | eqsstrdi 3946 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇) |
4 | fdm 6506 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ) | |
5 | 3, 4 | sseqtrd 3932 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ) |
6 | 5 | sseld 3891 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ)) |
7 | 6 | pm4.71rd 566 | . 2 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)))) |
8 | 1 | eleq2d 2837 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
9 | 8 | adantr 484 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) |
10 | ffn 6498 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ) | |
11 | eleq1 2839 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝐴 ∈ (◡𝑇 “ {0}))) | |
12 | fveqeq2 6667 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) = 0 ↔ (𝑇‘𝐴) = 0)) | |
13 | 11, 12 | bibi12d 349 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0) ↔ (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
14 | 13 | imbi2d 344 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)))) |
15 | 0cn 10671 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
16 | vex 3413 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
17 | 16 | eliniseg 5930 | . . . . . . . . 9 ⊢ (0 ∈ ℂ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0)) |
18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ (◡𝑇 “ {0}) ↔ 𝑥𝑇0) |
19 | fnbrfvb 6706 | . . . . . . . 8 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = 0 ↔ 𝑥𝑇0)) | |
20 | 18, 19 | bitr4id 293 | . . . . . . 7 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0)) |
21 | 20 | expcom 417 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝑥) = 0))) |
22 | 14, 21 | vtoclga 3492 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0))) |
23 | 10, 22 | mpan9 510 | . . . 4 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (◡𝑇 “ {0}) ↔ (𝑇‘𝐴) = 0)) |
24 | 9, 23 | bitrd 282 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇‘𝐴) = 0)) |
25 | 24 | pm5.32da 582 | . 2 ⊢ (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
26 | 7, 25 | bitrd 282 | 1 ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {csn 4522 class class class wbr 5032 ◡ccnv 5523 dom cdm 5524 “ cima 5527 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 ℂcc 10573 0cc0 10575 ℋchba 28801 nullcnl 28834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-mulcl 10637 ax-i2m1 10643 ax-hilex 28881 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-map 8418 df-nlfn 29728 |
This theorem is referenced by: elnlfn2 29811 nlelshi 29942 nlelchi 29943 riesz3i 29944 |
Copyright terms: Public domain | W3C validator |