HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elnlfn Structured version   Visualization version   GIF version

Theorem elnlfn 31872
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnlfn (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))

Proof of Theorem elnlfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nlfnval 31825 . . . . . 6 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
2 cnvimass 6033 . . . . . 6 (𝑇 “ {0}) ⊆ dom 𝑇
31, 2eqsstrdi 3980 . . . . 5 (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇)
4 fdm 6661 . . . . 5 (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ)
53, 4sseqtrd 3972 . . . 4 (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ)
65sseld 3934 . . 3 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ))
76pm4.71rd 562 . 2 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇))))
81eleq2d 2814 . . . . 5 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (𝑇 “ {0})))
98adantr 480 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (𝑇 “ {0})))
10 ffn 6652 . . . . 5 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
11 eleq1 2816 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ (𝑇 “ {0}) ↔ 𝐴 ∈ (𝑇 “ {0})))
12 fveqeq2 6831 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑇𝑥) = 0 ↔ (𝑇𝐴) = 0))
1311, 12bibi12d 345 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0) ↔ (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0)))
1413imbi2d 340 . . . . . 6 (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0))))
15 0cn 11107 . . . . . . . . 9 0 ∈ ℂ
16 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
1716eliniseg 6045 . . . . . . . . 9 (0 ∈ ℂ → (𝑥 ∈ (𝑇 “ {0}) ↔ 𝑥𝑇0))
1815, 17ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝑇 “ {0}) ↔ 𝑥𝑇0)
19 fnbrfvb 6873 . . . . . . . 8 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) = 0 ↔ 𝑥𝑇0))
2018, 19bitr4id 290 . . . . . . 7 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0))
2120expcom 413 . . . . . 6 (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0)))
2214, 21vtoclga 3532 . . . . 5 (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0)))
2310, 22mpan9 506 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0))
249, 23bitrd 279 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇𝐴) = 0))
2524pm5.32da 579 . 2 (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))
267, 25bitrd 279 1 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4577   class class class wbr 5092  ccnv 5618  dom cdm 5619  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  cc 11007  0cc0 11009  chba 30863  nullcnl 30896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071  ax-i2m1 11077  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-nlfn 31790
This theorem is referenced by:  elnlfn2  31873  nlelshi  32004  nlelchi  32005  riesz3i  32006
  Copyright terms: Public domain W3C validator