HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elnlfn Structured version   Visualization version   GIF version

Theorem elnlfn 29707
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnlfn (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))

Proof of Theorem elnlfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nlfnval 29660 . . . . . 6 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
2 cnvimass 5951 . . . . . 6 (𝑇 “ {0}) ⊆ dom 𝑇
31, 2eqsstrdi 4023 . . . . 5 (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇)
4 fdm 6524 . . . . 5 (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ)
53, 4sseqtrd 4009 . . . 4 (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ)
65sseld 3968 . . 3 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ))
76pm4.71rd 565 . 2 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇))))
81eleq2d 2900 . . . . 5 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (𝑇 “ {0})))
98adantr 483 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (𝑇 “ {0})))
10 ffn 6516 . . . . 5 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
11 eleq1 2902 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ (𝑇 “ {0}) ↔ 𝐴 ∈ (𝑇 “ {0})))
12 fveqeq2 6681 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑇𝑥) = 0 ↔ (𝑇𝐴) = 0))
1311, 12bibi12d 348 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0) ↔ (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0)))
1413imbi2d 343 . . . . . 6 (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0))))
15 fnbrfvb 6720 . . . . . . . 8 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) = 0 ↔ 𝑥𝑇0))
16 0cn 10635 . . . . . . . . 9 0 ∈ ℂ
17 vex 3499 . . . . . . . . . 10 𝑥 ∈ V
1817eliniseg 5960 . . . . . . . . 9 (0 ∈ ℂ → (𝑥 ∈ (𝑇 “ {0}) ↔ 𝑥𝑇0))
1916, 18ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝑇 “ {0}) ↔ 𝑥𝑇0)
2015, 19syl6rbbr 292 . . . . . . 7 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0))
2120expcom 416 . . . . . 6 (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0)))
2214, 21vtoclga 3576 . . . . 5 (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0)))
2310, 22mpan9 509 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0))
249, 23bitrd 281 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇𝐴) = 0))
2524pm5.32da 581 . 2 (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))
267, 25bitrd 281 1 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {csn 4569   class class class wbr 5068  ccnv 5556  dom cdm 5557  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  cc 10537  0cc0 10539  chba 28698  nullcnl 28731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-mulcl 10601  ax-i2m1 10607  ax-hilex 28778
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-nlfn 29625
This theorem is referenced by:  elnlfn2  29708  nlelshi  29839  nlelchi  29840  riesz3i  29841
  Copyright terms: Public domain W3C validator