HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elnlfn Structured version   Visualization version   GIF version

Theorem elnlfn 29810
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnlfn (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))

Proof of Theorem elnlfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nlfnval 29763 . . . . . 6 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
2 cnvimass 5921 . . . . . 6 (𝑇 “ {0}) ⊆ dom 𝑇
31, 2eqsstrdi 3946 . . . . 5 (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇)
4 fdm 6506 . . . . 5 (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ)
53, 4sseqtrd 3932 . . . 4 (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ)
65sseld 3891 . . 3 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ))
76pm4.71rd 566 . 2 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇))))
81eleq2d 2837 . . . . 5 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (𝑇 “ {0})))
98adantr 484 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (𝑇 “ {0})))
10 ffn 6498 . . . . 5 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
11 eleq1 2839 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ (𝑇 “ {0}) ↔ 𝐴 ∈ (𝑇 “ {0})))
12 fveqeq2 6667 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑇𝑥) = 0 ↔ (𝑇𝐴) = 0))
1311, 12bibi12d 349 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0) ↔ (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0)))
1413imbi2d 344 . . . . . 6 (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0))))
15 0cn 10671 . . . . . . . . 9 0 ∈ ℂ
16 vex 3413 . . . . . . . . . 10 𝑥 ∈ V
1716eliniseg 5930 . . . . . . . . 9 (0 ∈ ℂ → (𝑥 ∈ (𝑇 “ {0}) ↔ 𝑥𝑇0))
1815, 17ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝑇 “ {0}) ↔ 𝑥𝑇0)
19 fnbrfvb 6706 . . . . . . . 8 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) = 0 ↔ 𝑥𝑇0))
2018, 19bitr4id 293 . . . . . . 7 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0))
2120expcom 417 . . . . . 6 (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0)))
2214, 21vtoclga 3492 . . . . 5 (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0)))
2310, 22mpan9 510 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0))
249, 23bitrd 282 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇𝐴) = 0))
2524pm5.32da 582 . 2 (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))
267, 25bitrd 282 1 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {csn 4522   class class class wbr 5032  ccnv 5523  dom cdm 5524  cima 5527   Fn wfn 6330  wf 6331  cfv 6335  cc 10573  0cc0 10575  chba 28801  nullcnl 28834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-mulcl 10637  ax-i2m1 10643  ax-hilex 28881
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8418  df-nlfn 29728
This theorem is referenced by:  elnlfn2  29811  nlelshi  29942  nlelchi  29943  riesz3i  29944
  Copyright terms: Public domain W3C validator