HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elnlfn Structured version   Visualization version   GIF version

Theorem elnlfn 30191
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnlfn (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))

Proof of Theorem elnlfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nlfnval 30144 . . . . . 6 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
2 cnvimass 5978 . . . . . 6 (𝑇 “ {0}) ⊆ dom 𝑇
31, 2eqsstrdi 3971 . . . . 5 (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ dom 𝑇)
4 fdm 6593 . . . . 5 (𝑇: ℋ⟶ℂ → dom 𝑇 = ℋ)
53, 4sseqtrd 3957 . . . 4 (𝑇: ℋ⟶ℂ → (null‘𝑇) ⊆ ℋ)
65sseld 3916 . . 3 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) → 𝐴 ∈ ℋ))
76pm4.71rd 562 . 2 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇))))
81eleq2d 2824 . . . . 5 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (𝑇 “ {0})))
98adantr 480 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ 𝐴 ∈ (𝑇 “ {0})))
10 ffn 6584 . . . . 5 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
11 eleq1 2826 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ (𝑇 “ {0}) ↔ 𝐴 ∈ (𝑇 “ {0})))
12 fveqeq2 6765 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑇𝑥) = 0 ↔ (𝑇𝐴) = 0))
1311, 12bibi12d 345 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0) ↔ (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0)))
1413imbi2d 340 . . . . . 6 (𝑥 = 𝐴 → ((𝑇 Fn ℋ → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0)) ↔ (𝑇 Fn ℋ → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0))))
15 0cn 10898 . . . . . . . . 9 0 ∈ ℂ
16 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
1716eliniseg 5991 . . . . . . . . 9 (0 ∈ ℂ → (𝑥 ∈ (𝑇 “ {0}) ↔ 𝑥𝑇0))
1815, 17ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝑇 “ {0}) ↔ 𝑥𝑇0)
19 fnbrfvb 6804 . . . . . . . 8 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) = 0 ↔ 𝑥𝑇0))
2018, 19bitr4id 289 . . . . . . 7 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0))
2120expcom 413 . . . . . 6 (𝑥 ∈ ℋ → (𝑇 Fn ℋ → (𝑥 ∈ (𝑇 “ {0}) ↔ (𝑇𝑥) = 0)))
2214, 21vtoclga 3503 . . . . 5 (𝐴 ∈ ℋ → (𝑇 Fn ℋ → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0)))
2310, 22mpan9 506 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (𝑇 “ {0}) ↔ (𝑇𝐴) = 0))
249, 23bitrd 278 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (null‘𝑇) ↔ (𝑇𝐴) = 0))
2524pm5.32da 578 . 2 (𝑇: ℋ⟶ℂ → ((𝐴 ∈ ℋ ∧ 𝐴 ∈ (null‘𝑇)) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))
267, 25bitrd 278 1 (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {csn 4558   class class class wbr 5070  ccnv 5579  dom cdm 5580  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  cc 10800  0cc0 10802  chba 29182  nullcnl 29215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-nlfn 30109
This theorem is referenced by:  elnlfn2  30192  nlelshi  30323  nlelchi  30324  riesz3i  30325
  Copyright terms: Public domain W3C validator