![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrn | Structured version Visualization version GIF version |
Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020.) |
Ref | Expression |
---|---|
icoreelrn.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
icoreelrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoreval 37336 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) | |
2 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
3 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
4 | df-ico 13390 | . . . . . 6 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | |
5 | 4 | ixxf 13394 | . . . . 5 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
6 | ffun 6740 | . . . . 5 ⊢ ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,)) | |
7 | 5, 6 | mp1i 13 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → Fun [,)) |
8 | rexpssxrxp 11304 | . . . . . 6 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
9 | 5 | fdmi 6748 | . . . . . 6 ⊢ dom [,) = (ℝ* × ℝ*) |
10 | 8, 9 | sseqtrri 4033 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ dom [,) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ × ℝ) ⊆ dom [,)) |
12 | 2, 3, 7, 11 | elovimad 7481 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ ([,) “ (ℝ × ℝ))) |
13 | icoreelrn.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
14 | 12, 13 | eleqtrrdi 2850 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ 𝐼) |
15 | 1, 14 | eqeltrrd 2840 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 𝒫 cpw 4605 class class class wbr 5148 × cxp 5687 dom cdm 5689 “ cima 5692 Fun wfun 6557 ⟶wf 6559 (class class class)co 7431 ℝcr 11152 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 [,)cico 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ico 13390 |
This theorem is referenced by: relowlssretop 37346 |
Copyright terms: Public domain | W3C validator |