Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrn | Structured version Visualization version GIF version |
Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020.) |
Ref | Expression |
---|---|
icoreelrn.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
icoreelrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoreval 35169 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) | |
2 | simpl 486 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
3 | simpr 488 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
4 | df-ico 12829 | . . . . . 6 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | |
5 | 4 | ixxf 12833 | . . . . 5 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
6 | ffun 6507 | . . . . 5 ⊢ ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,)) | |
7 | 5, 6 | mp1i 13 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → Fun [,)) |
8 | rexpssxrxp 10766 | . . . . . 6 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
9 | 5 | fdmi 6516 | . . . . . 6 ⊢ dom [,) = (ℝ* × ℝ*) |
10 | 8, 9 | sseqtrri 3914 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ dom [,) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ × ℝ) ⊆ dom [,)) |
12 | 2, 3, 7, 11 | elovimad 7220 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ ([,) “ (ℝ × ℝ))) |
13 | icoreelrn.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
14 | 12, 13 | eleqtrrdi 2844 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ 𝐼) |
15 | 1, 14 | eqeltrrd 2834 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {crab 3057 ⊆ wss 3843 𝒫 cpw 4488 class class class wbr 5030 × cxp 5523 dom cdm 5525 “ cima 5528 Fun wfun 6333 ⟶wf 6335 (class class class)co 7172 ℝcr 10616 ℝ*cxr 10754 < clt 10755 ≤ cle 10756 [,)cico 12825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-pre-lttri 10691 ax-pre-lttrn 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-1st 7716 df-2nd 7717 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-ico 12829 |
This theorem is referenced by: relowlssretop 35179 |
Copyright terms: Public domain | W3C validator |