Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreelrn Structured version   Visualization version   GIF version

Theorem icoreelrn 35177
Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020.)
Hypothesis
Ref Expression
icoreelrn.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreelrn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)} ∈ 𝐼)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝐼(𝑧)

Proof of Theorem icoreelrn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icoreval 35169 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
2 simpl 486 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
3 simpr 488 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
4 df-ico 12829 . . . . . 6 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑎𝑧𝑧 < 𝑏)})
54ixxf 12833 . . . . 5 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
6 ffun 6507 . . . . 5 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,))
75, 6mp1i 13 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → Fun [,))
8 rexpssxrxp 10766 . . . . . 6 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
95fdmi 6516 . . . . . 6 dom [,) = (ℝ* × ℝ*)
108, 9sseqtrri 3914 . . . . 5 (ℝ × ℝ) ⊆ dom [,)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ × ℝ) ⊆ dom [,))
122, 3, 7, 11elovimad 7220 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ ([,) “ (ℝ × ℝ)))
13 icoreelrn.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
1412, 13eleqtrrdi 2844 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ 𝐼)
151, 14eqeltrrd 2834 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)} ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {crab 3057  wss 3843  𝒫 cpw 4488   class class class wbr 5030   × cxp 5523  dom cdm 5525  cima 5528  Fun wfun 6333  wf 6335  (class class class)co 7172  cr 10616  *cxr 10754   < clt 10755  cle 10756  [,)cico 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-pre-lttri 10691  ax-pre-lttrn 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7175  df-oprab 7176  df-mpo 7177  df-1st 7716  df-2nd 7717  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-ico 12829
This theorem is referenced by:  relowlssretop  35179
  Copyright terms: Public domain W3C validator