![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrn | Structured version Visualization version GIF version |
Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020.) |
Ref | Expression |
---|---|
icoreelrn.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
icoreelrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoreval 37319 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) | |
2 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
3 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
4 | df-ico 13413 | . . . . . 6 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | |
5 | 4 | ixxf 13417 | . . . . 5 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
6 | ffun 6750 | . . . . 5 ⊢ ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,)) | |
7 | 5, 6 | mp1i 13 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → Fun [,)) |
8 | rexpssxrxp 11335 | . . . . . 6 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
9 | 5 | fdmi 6758 | . . . . . 6 ⊢ dom [,) = (ℝ* × ℝ*) |
10 | 8, 9 | sseqtrri 4046 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ dom [,) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ × ℝ) ⊆ dom [,)) |
12 | 2, 3, 7, 11 | elovimad 7498 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ ([,) “ (ℝ × ℝ))) |
13 | icoreelrn.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
14 | 12, 13 | eleqtrrdi 2855 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ 𝐼) |
15 | 1, 14 | eqeltrrd 2845 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 × cxp 5698 dom cdm 5700 “ cima 5703 Fun wfun 6567 ⟶wf 6569 (class class class)co 7448 ℝcr 11183 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 |
This theorem is referenced by: relowlssretop 37329 |
Copyright terms: Public domain | W3C validator |