![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspceov | Structured version Visualization version GIF version |
Description: A frequently used special case of rspc2ev 3552 for operation values. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
rspceov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6989 | . . 3 ⊢ (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦)) | |
2 | 1 | eqeq2d 2790 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦))) |
3 | oveq2 6990 | . . 3 ⊢ (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷)) | |
4 | 3 | eqeq2d 2790 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷))) |
5 | 2, 4 | rspc2ev 3552 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∃wrex 3091 (class class class)co 6982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2752 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-rex 3096 df-rab 3099 df-v 3419 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-br 4935 df-iota 6157 df-fv 6201 df-ov 6985 |
This theorem is referenced by: iunfictbso 9340 genpprecl 10227 elz2 11817 zaddcl 11841 znq 12172 qaddcl 12185 qmulcl 12187 qreccl 12189 xpsff1o 16710 mndpfo 17794 gafo 18209 lsmelvalix 18539 lsmelvalmi 18550 evthicc2 23779 i1fadd 24014 i1fmul 24015 2clwwlk2clwwlk 27902 2clwwlk2clwwlkOLD 27903 isgrpoi 28067 shscli 28890 shsva 28893 shunssi 28941 pjpjhth 28998 spanunsni 29152 pjjsi 29273 ofrn2 30166 pstmfval 30812 ismblfin 34414 itg2addnc 34427 blbnd 34547 isgrpda 34715 sbgoldbalt 43349 |
Copyright terms: Public domain | W3C validator |