| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceov | Structured version Visualization version GIF version | ||
| Description: A frequently used special case of rspc2ev 3614 for operation values. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| rspceov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7412 | . . 3 ⊢ (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦)) | |
| 2 | 1 | eqeq2d 2746 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦))) |
| 3 | oveq2 7413 | . . 3 ⊢ (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷)) | |
| 4 | 3 | eqeq2d 2746 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷))) |
| 5 | 2, 4 | rspc2ev 3614 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: iunfictbso 10128 genpprecl 11015 elz2 12606 zaddcl 12632 znq 12968 qaddcl 12981 qmulcl 12983 qreccl 12985 xpsff1o 17581 mndpfo 18735 gafo 19279 lsmelvalix 19622 lsmelvalmi 19633 evthicc2 25413 i1fadd 25648 i1fmul 25649 nnzsubs 28325 nnzs 28326 0zs 28328 zmulscld 28337 elzn0s 28338 2clwwlk2clwwlk 30331 isgrpoi 30479 shscli 31298 shsva 31301 shunssi 31349 pjpjhth 31406 spanunsni 31560 pjjsi 31681 ofrn2 32618 elringlsmd 33409 pstmfval 33927 ismblfin 37685 itg2addnc 37698 blbnd 37811 isgrpda 37979 sbgoldbalt 47795 |
| Copyright terms: Public domain | W3C validator |