| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceov | Structured version Visualization version GIF version | ||
| Description: A frequently used special case of rspc2ev 3590 for operation values. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| rspceov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . 3 ⊢ (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦)) | |
| 2 | 1 | eqeq2d 2742 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦))) |
| 3 | oveq2 7354 | . . 3 ⊢ (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷)) | |
| 4 | 3 | eqeq2d 2742 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷))) |
| 5 | 2, 4 | rspc2ev 3590 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: iunfictbso 10002 genpprecl 10889 elz2 12483 zaddcl 12509 znq 12847 qaddcl 12860 qmulcl 12862 qreccl 12864 xpsff1o 17468 mndpfo 18662 gafo 19206 lsmelvalix 19551 lsmelvalmi 19562 evthicc2 25386 i1fadd 25621 i1fmul 25622 nnzsubs 28307 nnzs 28308 0zs 28310 zmulscld 28319 elzn0s 28320 2clwwlk2clwwlk 30325 isgrpoi 30473 shscli 31292 shsva 31295 shunssi 31343 pjpjhth 31400 spanunsni 31554 pjjsi 31675 ofrn2 32617 elringlsmd 33354 pstmfval 33904 ismblfin 37700 itg2addnc 37713 blbnd 37826 isgrpda 37994 sbgoldbalt 47811 |
| Copyright terms: Public domain | W3C validator |