MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceov Structured version   Visualization version   GIF version

Theorem rspceov 7458
Description: A frequently used special case of rspc2ev 3623 for operation values. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
rspceov ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐷(𝑥)

Proof of Theorem rspceov
StepHypRef Expression
1 oveq1 7418 . . 3 (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦))
21eqeq2d 2741 . 2 (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦)))
3 oveq2 7419 . . 3 (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷))
43eqeq2d 2741 . 2 (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷)))
52, 4rspc2ev 3623 1 ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2104  wrex 3068  (class class class)co 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414
This theorem is referenced by:  iunfictbso  10111  genpprecl  10998  elz2  12580  zaddcl  12606  znq  12940  qaddcl  12953  qmulcl  12955  qreccl  12957  xpsff1o  17517  mndpfo  18682  gafo  19201  lsmelvalix  19550  lsmelvalmi  19561  evthicc2  25209  i1fadd  25444  i1fmul  25445  2clwwlk2clwwlk  29870  isgrpoi  30018  shscli  30837  shsva  30840  shunssi  30888  pjpjhth  30945  spanunsni  31099  pjjsi  31220  ofrn2  32132  elringlsmd  32778  pstmfval  33174  ismblfin  36832  itg2addnc  36845  blbnd  36958  isgrpda  37126  sbgoldbalt  46747
  Copyright terms: Public domain W3C validator