MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceov Structured version   Visualization version   GIF version

Theorem rspceov 7458
Description: A frequently used special case of rspc2ev 3624 for operation values. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
rspceov ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐷(𝑥)

Proof of Theorem rspceov
StepHypRef Expression
1 oveq1 7418 . . 3 (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦))
21eqeq2d 2743 . 2 (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦)))
3 oveq2 7419 . . 3 (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷))
43eqeq2d 2743 . 2 (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷)))
52, 4rspc2ev 3624 1 ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  (class class class)co 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414
This theorem is referenced by:  iunfictbso  10111  genpprecl  10998  elz2  12580  zaddcl  12606  znq  12940  qaddcl  12953  qmulcl  12955  qreccl  12957  xpsff1o  17517  mndpfo  18682  gafo  19201  lsmelvalix  19550  lsmelvalmi  19561  evthicc2  25201  i1fadd  25436  i1fmul  25437  2clwwlk2clwwlk  29858  isgrpoi  30006  shscli  30825  shsva  30828  shunssi  30876  pjpjhth  30933  spanunsni  31087  pjjsi  31208  ofrn2  32120  elringlsmd  32766  pstmfval  33162  ismblfin  36832  itg2addnc  36845  blbnd  36958  isgrpda  37126  sbgoldbalt  46748
  Copyright terms: Public domain W3C validator