| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceov | Structured version Visualization version GIF version | ||
| Description: A frequently used special case of rspc2ev 3586 for operation values. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| rspceov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . 3 ⊢ (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦)) | |
| 2 | 1 | eqeq2d 2744 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦))) |
| 3 | oveq2 7360 | . . 3 ⊢ (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷)) | |
| 4 | 3 | eqeq2d 2744 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷))) |
| 5 | 2, 4 | rspc2ev 3586 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: iunfictbso 10012 genpprecl 10899 elz2 12493 zaddcl 12518 znq 12852 qaddcl 12865 qmulcl 12867 qreccl 12869 xpsff1o 17473 mndpfo 18667 gafo 19210 lsmelvalix 19555 lsmelvalmi 19566 evthicc2 25389 i1fadd 25624 i1fmul 25625 nnzsubs 28310 nnzs 28311 0zs 28313 zmulscld 28322 elzn0s 28323 2clwwlk2clwwlk 30332 isgrpoi 30480 shscli 31299 shsva 31302 shunssi 31350 pjpjhth 31407 spanunsni 31561 pjjsi 31682 ofrn2 32624 elringlsmd 33366 pstmfval 33930 ismblfin 37721 itg2addnc 37734 blbnd 37847 isgrpda 38015 sbgoldbalt 47905 |
| Copyright terms: Public domain | W3C validator |