Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspceov | Structured version Visualization version GIF version |
Description: A frequently used special case of rspc2ev 3572 for operation values. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
rspceov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7275 | . . 3 ⊢ (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦)) | |
2 | 1 | eqeq2d 2750 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦))) |
3 | oveq2 7276 | . . 3 ⊢ (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷)) | |
4 | 3 | eqeq2d 2750 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷))) |
5 | 2, 4 | rspc2ev 3572 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 (class class class)co 7268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: iunfictbso 9854 genpprecl 10741 elz2 12320 zaddcl 12343 znq 12674 qaddcl 12687 qmulcl 12689 qreccl 12691 xpsff1o 17259 mndpfo 18389 gafo 18883 lsmelvalix 19227 lsmelvalmi 19238 evthicc2 24605 i1fadd 24840 i1fmul 24841 2clwwlk2clwwlk 28693 isgrpoi 28839 shscli 29658 shsva 29661 shunssi 29709 pjpjhth 29766 spanunsni 29920 pjjsi 30041 ofrn2 30956 elringlsmd 31561 pstmfval 31825 ismblfin 35797 itg2addnc 35810 blbnd 35924 isgrpda 36092 sbgoldbalt 45185 |
Copyright terms: Public domain | W3C validator |