MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceov Structured version   Visualization version   GIF version

Theorem rspceov 7395
Description: A frequently used special case of rspc2ev 3590 for operation values. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
rspceov ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐷(𝑥)

Proof of Theorem rspceov
StepHypRef Expression
1 oveq1 7353 . . 3 (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦))
21eqeq2d 2742 . 2 (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦)))
3 oveq2 7354 . . 3 (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷))
43eqeq2d 2742 . 2 (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷)))
52, 4rspc2ev 3590 1 ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  iunfictbso  10002  genpprecl  10889  elz2  12483  zaddcl  12509  znq  12847  qaddcl  12860  qmulcl  12862  qreccl  12864  xpsff1o  17468  mndpfo  18662  gafo  19206  lsmelvalix  19551  lsmelvalmi  19562  evthicc2  25386  i1fadd  25621  i1fmul  25622  nnzsubs  28307  nnzs  28308  0zs  28310  zmulscld  28319  elzn0s  28320  2clwwlk2clwwlk  30325  isgrpoi  30473  shscli  31292  shsva  31295  shunssi  31343  pjpjhth  31400  spanunsni  31554  pjjsi  31675  ofrn2  32617  elringlsmd  33354  pstmfval  33904  ismblfin  37700  itg2addnc  37713  blbnd  37826  isgrpda  37994  sbgoldbalt  47811
  Copyright terms: Public domain W3C validator