MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceov Structured version   Visualization version   GIF version

Theorem rspceov 7028
Description: A frequently used special case of rspc2ev 3552 for operation values. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
rspceov ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐷(𝑥)

Proof of Theorem rspceov
StepHypRef Expression
1 oveq1 6989 . . 3 (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦))
21eqeq2d 2790 . 2 (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦)))
3 oveq2 6990 . . 3 (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷))
43eqeq2d 2790 . 2 (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷)))
52, 4rspc2ev 3552 1 ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1069   = wceq 1508  wcel 2051  wrex 3091  (class class class)co 6982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2752
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-rex 3096  df-rab 3099  df-v 3419  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-iota 6157  df-fv 6201  df-ov 6985
This theorem is referenced by:  iunfictbso  9340  genpprecl  10227  elz2  11817  zaddcl  11841  znq  12172  qaddcl  12185  qmulcl  12187  qreccl  12189  xpsff1o  16710  mndpfo  17794  gafo  18209  lsmelvalix  18539  lsmelvalmi  18550  evthicc2  23779  i1fadd  24014  i1fmul  24015  2clwwlk2clwwlk  27902  2clwwlk2clwwlkOLD  27903  isgrpoi  28067  shscli  28890  shsva  28893  shunssi  28941  pjpjhth  28998  spanunsni  29152  pjjsi  29273  ofrn2  30166  pstmfval  30812  ismblfin  34414  itg2addnc  34427  blbnd  34547  isgrpda  34715  sbgoldbalt  43349
  Copyright terms: Public domain W3C validator