Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrreccl Structured version   Visualization version   GIF version

Theorem pell1234qrreccl 42335
Description: General solutions of the Pell equation are closed under reciprocals. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrreccl ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ (Pell1234QRโ€˜๐ท))

Proof of Theorem pell1234qrreccl
Dummy variables ๐‘Ž ๐‘ ๐‘ ๐‘‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 42332 . . . 4 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐ด โˆˆ (Pell1234QRโ€˜๐ท) โ†” (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
21biimpa 475 . . 3 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)))
3 pell1234qrre 42333 . . . . . . . . 9 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ๐ด โˆˆ โ„)
4 pell1234qrne0 42334 . . . . . . . . 9 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ๐ด โ‰  0)
53, 4rereccld 12066 . . . . . . . 8 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ โ„)
65ad2antrr 724 . . . . . . 7 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (1 / ๐ด) โˆˆ โ„)
7 simplrl 775 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘Ž โˆˆ โ„ค)
8 simplrr 776 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘ โˆˆ โ„ค)
98znegcld 12693 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ -๐‘ โˆˆ โ„ค)
105recnd 11267 . . . . . . . . . 10 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ โ„‚)
1110ad2antrr 724 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (1 / ๐ด) โˆˆ โ„‚)
12 zcn 12588 . . . . . . . . . . . 12 (๐‘Ž โˆˆ โ„ค โ†’ ๐‘Ž โˆˆ โ„‚)
1312adantr 479 . . . . . . . . . . 11 ((๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘Ž โˆˆ โ„‚)
1413ad2antlr 725 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘Ž โˆˆ โ„‚)
15 eldifi 4120 . . . . . . . . . . . . . 14 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ๐ท โˆˆ โ„•)
1615nncnd 12253 . . . . . . . . . . . . 13 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ๐ท โˆˆ โ„‚)
1716ad3antrrr 728 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ท โˆˆ โ„‚)
1817sqrtcld 15411 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (โˆšโ€˜๐ท) โˆˆ โ„‚)
198zcnd 12692 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘ โˆˆ โ„‚)
2019negcld 11583 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ -๐‘ โˆˆ โ„‚)
2118, 20mulcld 11259 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((โˆšโ€˜๐ท) ยท -๐‘) โˆˆ โ„‚)
2214, 21addcld 11258 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆˆ โ„‚)
233recnd 11267 . . . . . . . . . 10 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ๐ด โˆˆ โ„‚)
2423ad2antrr 724 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด โˆˆ โ„‚)
254ad2antrr 724 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด โ‰  0)
2618, 19sqmuld 14149 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2) = (((โˆšโ€˜๐ท)โ†‘2) ยท (๐‘โ†‘2)))
2717sqsqrtd 15413 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((โˆšโ€˜๐ท)โ†‘2) = ๐ท)
2827oveq1d 7428 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (((โˆšโ€˜๐ท)โ†‘2) ยท (๐‘โ†‘2)) = (๐ท ยท (๐‘โ†‘2)))
2926, 28eqtr2d 2766 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ท ยท (๐‘โ†‘2)) = (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2))
3029oveq2d 7429 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)))
31 simprr 771 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)
3218, 19mulcld 11259 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚)
33 subsq 14200 . . . . . . . . . . . 12 ((๐‘Ž โˆˆ โ„‚ โˆง ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚) โ†’ ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
3414, 32, 33syl2anc 582 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
3530, 31, 343eqtr3d 2773 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ 1 = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
3624, 25recidd 12010 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (1 / ๐ด)) = 1)
37 simprl 769 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
3818, 19mulneg2d 11693 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((โˆšโ€˜๐ท) ยท -๐‘) = -((โˆšโ€˜๐ท) ยท ๐‘))
3938oveq2d 7429 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) = (๐‘Ž + -((โˆšโ€˜๐ท) ยท ๐‘)))
4014, 32negsubd 11602 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + -((โˆšโ€˜๐ท) ยท ๐‘)) = (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)))
4139, 40eqtrd 2765 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) = (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)))
4237, 41oveq12d 7431 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
4335, 36, 423eqtr4d 2775 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (1 / ๐ด)) = (๐ด ยท (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))))
4411, 22, 24, 25, 43mulcanad 11874 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)))
45 sqneg 14107 . . . . . . . . . . . 12 (๐‘ โˆˆ โ„‚ โ†’ (-๐‘โ†‘2) = (๐‘โ†‘2))
4619, 45syl 17 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (-๐‘โ†‘2) = (๐‘โ†‘2))
4746oveq2d 7429 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ท ยท (-๐‘โ†‘2)) = (๐ท ยท (๐‘โ†‘2)))
4847oveq2d 7429 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))))
4948, 31eqtrd 2765 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)
50 oveq1 7420 . . . . . . . . . . 11 (๐‘ = ๐‘Ž โ†’ (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)))
5150eqeq2d 2736 . . . . . . . . . 10 (๐‘ = ๐‘Ž โ†’ ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โ†” (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘))))
52 oveq1 7420 . . . . . . . . . . . 12 (๐‘ = ๐‘Ž โ†’ (๐‘โ†‘2) = (๐‘Žโ†‘2))
5352oveq1d 7428 . . . . . . . . . . 11 (๐‘ = ๐‘Ž โ†’ ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))))
5453eqeq1d 2727 . . . . . . . . . 10 (๐‘ = ๐‘Ž โ†’ (((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1 โ†” ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))
5551, 54anbi12d 630 . . . . . . . . 9 (๐‘ = ๐‘Ž โ†’ (((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1) โ†” ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1)))
56 oveq2 7421 . . . . . . . . . . . 12 (๐‘‘ = -๐‘ โ†’ ((โˆšโ€˜๐ท) ยท ๐‘‘) = ((โˆšโ€˜๐ท) ยท -๐‘))
5756oveq2d 7429 . . . . . . . . . . 11 (๐‘‘ = -๐‘ โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)))
5857eqeq2d 2736 . . . . . . . . . 10 (๐‘‘ = -๐‘ โ†’ ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โ†” (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))))
59 oveq1 7420 . . . . . . . . . . . . 13 (๐‘‘ = -๐‘ โ†’ (๐‘‘โ†‘2) = (-๐‘โ†‘2))
6059oveq2d 7429 . . . . . . . . . . . 12 (๐‘‘ = -๐‘ โ†’ (๐ท ยท (๐‘‘โ†‘2)) = (๐ท ยท (-๐‘โ†‘2)))
6160oveq2d 7429 . . . . . . . . . . 11 (๐‘‘ = -๐‘ โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))))
6261eqeq1d 2727 . . . . . . . . . 10 (๐‘‘ = -๐‘ โ†’ (((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1 โ†” ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1))
6358, 62anbi12d 630 . . . . . . . . 9 (๐‘‘ = -๐‘ โ†’ (((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1) โ†” ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)))
6455, 63rspc2ev 3616 . . . . . . . 8 ((๐‘Ž โˆˆ โ„ค โˆง -๐‘ โˆˆ โ„ค โˆง ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)) โ†’ โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))
657, 9, 44, 49, 64syl112anc 1371 . . . . . . 7 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))
666, 65jca 510 . . . . . 6 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1)))
6766ex 411 . . . . 5 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
6867rexlimdvva 3202 . . . 4 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
6968adantld 489 . . 3 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ((๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
702, 69mpd 15 . 2 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1)))
71 elpell1234qr 42332 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ((1 / ๐ด) โˆˆ (Pell1234QRโ€˜๐ท) โ†” ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
7271adantr 479 . 2 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ((1 / ๐ด) โˆˆ (Pell1234QRโ€˜๐ท) โ†” ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
7370, 72mpbird 256 1 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ (Pell1234QRโ€˜๐ท))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2930  โˆƒwrex 3060   โˆ– cdif 3938  โ€˜cfv 6543  (class class class)co 7413  โ„‚cc 11131  โ„cr 11132  0cc0 11133  1c1 11134   + caddc 11136   ยท cmul 11138   โˆ’ cmin 11469  -cneg 11470   / cdiv 11896  โ„•cn 12237  2c2 12292  โ„คcz 12583  โ†‘cexp 14053  โˆšcsqrt 15207  โ—ปNNcsquarenn 42317  Pell1234QRcpell1234qr 42319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-pell1234qr 42325
This theorem is referenced by:  pell14qrreccl  42345
  Copyright terms: Public domain W3C validator