Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrreccl Structured version   Visualization version   GIF version

Theorem pell1234qrreccl 42196
Description: General solutions of the Pell equation are closed under reciprocals. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrreccl ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ (Pell1234QRโ€˜๐ท))

Proof of Theorem pell1234qrreccl
Dummy variables ๐‘Ž ๐‘ ๐‘ ๐‘‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 42193 . . . 4 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐ด โˆˆ (Pell1234QRโ€˜๐ท) โ†” (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
21biimpa 476 . . 3 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)))
3 pell1234qrre 42194 . . . . . . . . 9 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ๐ด โˆˆ โ„)
4 pell1234qrne0 42195 . . . . . . . . 9 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ๐ด โ‰  0)
53, 4rereccld 12063 . . . . . . . 8 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ โ„)
65ad2antrr 725 . . . . . . 7 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (1 / ๐ด) โˆˆ โ„)
7 simplrl 776 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘Ž โˆˆ โ„ค)
8 simplrr 777 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘ โˆˆ โ„ค)
98znegcld 12690 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ -๐‘ โˆˆ โ„ค)
105recnd 11264 . . . . . . . . . 10 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ โ„‚)
1110ad2antrr 725 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (1 / ๐ด) โˆˆ โ„‚)
12 zcn 12585 . . . . . . . . . . . 12 (๐‘Ž โˆˆ โ„ค โ†’ ๐‘Ž โˆˆ โ„‚)
1312adantr 480 . . . . . . . . . . 11 ((๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘Ž โˆˆ โ„‚)
1413ad2antlr 726 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘Ž โˆˆ โ„‚)
15 eldifi 4122 . . . . . . . . . . . . . 14 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ๐ท โˆˆ โ„•)
1615nncnd 12250 . . . . . . . . . . . . 13 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ๐ท โˆˆ โ„‚)
1716ad3antrrr 729 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ท โˆˆ โ„‚)
1817sqrtcld 15408 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (โˆšโ€˜๐ท) โˆˆ โ„‚)
198zcnd 12689 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘ โˆˆ โ„‚)
2019negcld 11580 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ -๐‘ โˆˆ โ„‚)
2118, 20mulcld 11256 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((โˆšโ€˜๐ท) ยท -๐‘) โˆˆ โ„‚)
2214, 21addcld 11255 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆˆ โ„‚)
233recnd 11264 . . . . . . . . . 10 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ๐ด โˆˆ โ„‚)
2423ad2antrr 725 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด โˆˆ โ„‚)
254ad2antrr 725 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด โ‰  0)
2618, 19sqmuld 14146 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2) = (((โˆšโ€˜๐ท)โ†‘2) ยท (๐‘โ†‘2)))
2717sqsqrtd 15410 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((โˆšโ€˜๐ท)โ†‘2) = ๐ท)
2827oveq1d 7429 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (((โˆšโ€˜๐ท)โ†‘2) ยท (๐‘โ†‘2)) = (๐ท ยท (๐‘โ†‘2)))
2926, 28eqtr2d 2768 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ท ยท (๐‘โ†‘2)) = (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2))
3029oveq2d 7430 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)))
31 simprr 772 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)
3218, 19mulcld 11256 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚)
33 subsq 14197 . . . . . . . . . . . 12 ((๐‘Ž โˆˆ โ„‚ โˆง ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚) โ†’ ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
3414, 32, 33syl2anc 583 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
3530, 31, 343eqtr3d 2775 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ 1 = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
3624, 25recidd 12007 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (1 / ๐ด)) = 1)
37 simprl 770 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
3818, 19mulneg2d 11690 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((โˆšโ€˜๐ท) ยท -๐‘) = -((โˆšโ€˜๐ท) ยท ๐‘))
3938oveq2d 7430 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) = (๐‘Ž + -((โˆšโ€˜๐ท) ยท ๐‘)))
4014, 32negsubd 11599 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + -((โˆšโ€˜๐ท) ยท ๐‘)) = (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)))
4139, 40eqtrd 2767 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) = (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)))
4237, 41oveq12d 7432 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
4335, 36, 423eqtr4d 2777 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (1 / ๐ด)) = (๐ด ยท (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))))
4411, 22, 24, 25, 43mulcanad 11871 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)))
45 sqneg 14104 . . . . . . . . . . . 12 (๐‘ โˆˆ โ„‚ โ†’ (-๐‘โ†‘2) = (๐‘โ†‘2))
4619, 45syl 17 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (-๐‘โ†‘2) = (๐‘โ†‘2))
4746oveq2d 7430 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ท ยท (-๐‘โ†‘2)) = (๐ท ยท (๐‘โ†‘2)))
4847oveq2d 7430 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))))
4948, 31eqtrd 2767 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)
50 oveq1 7421 . . . . . . . . . . 11 (๐‘ = ๐‘Ž โ†’ (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)))
5150eqeq2d 2738 . . . . . . . . . 10 (๐‘ = ๐‘Ž โ†’ ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โ†” (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘))))
52 oveq1 7421 . . . . . . . . . . . 12 (๐‘ = ๐‘Ž โ†’ (๐‘โ†‘2) = (๐‘Žโ†‘2))
5352oveq1d 7429 . . . . . . . . . . 11 (๐‘ = ๐‘Ž โ†’ ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))))
5453eqeq1d 2729 . . . . . . . . . 10 (๐‘ = ๐‘Ž โ†’ (((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1 โ†” ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))
5551, 54anbi12d 630 . . . . . . . . 9 (๐‘ = ๐‘Ž โ†’ (((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1) โ†” ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1)))
56 oveq2 7422 . . . . . . . . . . . 12 (๐‘‘ = -๐‘ โ†’ ((โˆšโ€˜๐ท) ยท ๐‘‘) = ((โˆšโ€˜๐ท) ยท -๐‘))
5756oveq2d 7430 . . . . . . . . . . 11 (๐‘‘ = -๐‘ โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)))
5857eqeq2d 2738 . . . . . . . . . 10 (๐‘‘ = -๐‘ โ†’ ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โ†” (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))))
59 oveq1 7421 . . . . . . . . . . . . 13 (๐‘‘ = -๐‘ โ†’ (๐‘‘โ†‘2) = (-๐‘โ†‘2))
6059oveq2d 7430 . . . . . . . . . . . 12 (๐‘‘ = -๐‘ โ†’ (๐ท ยท (๐‘‘โ†‘2)) = (๐ท ยท (-๐‘โ†‘2)))
6160oveq2d 7430 . . . . . . . . . . 11 (๐‘‘ = -๐‘ โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))))
6261eqeq1d 2729 . . . . . . . . . 10 (๐‘‘ = -๐‘ โ†’ (((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1 โ†” ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1))
6358, 62anbi12d 630 . . . . . . . . 9 (๐‘‘ = -๐‘ โ†’ (((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1) โ†” ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)))
6455, 63rspc2ev 3620 . . . . . . . 8 ((๐‘Ž โˆˆ โ„ค โˆง -๐‘ โˆˆ โ„ค โˆง ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)) โ†’ โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))
657, 9, 44, 49, 64syl112anc 1372 . . . . . . 7 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))
666, 65jca 511 . . . . . 6 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1)))
6766ex 412 . . . . 5 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โˆง (๐‘Ž โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
6867rexlimdvva 3206 . . . 4 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
6968adantld 490 . . 3 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ((๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
702, 69mpd 15 . 2 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1)))
71 elpell1234qr 42193 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ((1 / ๐ด) โˆˆ (Pell1234QRโ€˜๐ท) โ†” ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
7271adantr 480 . 2 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ ((1 / ๐ด) โˆˆ (Pell1234QRโ€˜๐ท) โ†” ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘‘ โˆˆ โ„ค ((1 / ๐ด) = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘‘โ†‘2))) = 1))))
7370, 72mpbird 257 1 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1234QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ (Pell1234QRโ€˜๐ท))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1534   โˆˆ wcel 2099   โ‰  wne 2935  โˆƒwrex 3065   โˆ– cdif 3941  โ€˜cfv 6542  (class class class)co 7414  โ„‚cc 11128  โ„cr 11129  0cc0 11130  1c1 11131   + caddc 11133   ยท cmul 11135   โˆ’ cmin 11466  -cneg 11467   / cdiv 11893  โ„•cn 12234  2c2 12289  โ„คcz 12580  โ†‘cexp 14050  โˆšcsqrt 15204  โ—ปNNcsquarenn 42178  Pell1234QRcpell1234qr 42180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-pell1234qr 42186
This theorem is referenced by:  pell14qrreccl  42206
  Copyright terms: Public domain W3C validator