Step | Hyp | Ref
| Expression |
1 | | elpell1234qr 40193 |
. . . 4
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
2 | 1 | biimpa 480 |
. . 3
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))) |
3 | | pell1234qrre 40194 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) |
4 | | pell1234qrne0 40195 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0) |
5 | 3, 4 | rereccld 11510 |
. . . . . . . 8
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ ℝ) |
6 | 5 | ad2antrr 725 |
. . . . . . 7
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) ∈
ℝ) |
7 | | simplrl 776 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℤ) |
8 | | simplrr 777 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℤ) |
9 | 8 | znegcld 12133 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℤ) |
10 | 5 | recnd 10712 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ ℂ) |
11 | 10 | ad2antrr 725 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) ∈
ℂ) |
12 | | zcn 12030 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
13 | 12 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈
ℂ) |
14 | 13 | ad2antlr 726 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℂ) |
15 | | eldifi 4034 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 𝐷 ∈ ℕ) |
16 | 15 | nncnd 11695 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 𝐷 ∈ ℂ) |
17 | 16 | ad3antrrr 729 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℂ) |
18 | 17 | sqrtcld 14850 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (√‘𝐷) ∈
ℂ) |
19 | 8 | zcnd 12132 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℂ) |
20 | 19 | negcld 11027 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℂ) |
21 | 18, 20 | mulcld 10704 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · -𝑏) ∈ ℂ) |
22 | 14, 21 | addcld 10703 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) ∈ ℂ) |
23 | 3 | recnd 10712 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℂ) |
24 | 23 | ad2antrr 725 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℂ) |
25 | 4 | ad2antrr 725 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0) |
26 | 18, 19 | sqmuld 13577 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) →
(((√‘𝐷)
· 𝑏)↑2) =
(((√‘𝐷)↑2)
· (𝑏↑2))) |
27 | 17 | sqsqrtd 14852 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷)↑2) = 𝐷) |
28 | 27 | oveq1d 7170 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) →
(((√‘𝐷)↑2)
· (𝑏↑2)) =
(𝐷 · (𝑏↑2))) |
29 | 26, 28 | eqtr2d 2794 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (𝑏↑2)) = (((√‘𝐷) · 𝑏)↑2)) |
30 | 29 | oveq2d 7171 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2))) |
31 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) |
32 | 18, 19 | mulcld 10704 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · 𝑏) ∈ ℂ) |
33 | | subsq 13627 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℂ ∧
((√‘𝐷) ·
𝑏) ∈ ℂ) →
((𝑎↑2) −
(((√‘𝐷)
· 𝑏)↑2)) =
((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
34 | 14, 32, 33 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
35 | 30, 31, 34 | 3eqtr3d 2801 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
36 | 24, 25 | recidd 11454 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = 1) |
37 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) |
38 | 18, 19 | mulneg2d 11137 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · -𝑏) = -((√‘𝐷) · 𝑏)) |
39 | 38 | oveq2d 7171 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 + -((√‘𝐷) · 𝑏))) |
40 | 14, 32 | negsubd 11046 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + -((√‘𝐷) · 𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏))) |
41 | 39, 40 | eqtrd 2793 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏))) |
42 | 37, 41 | oveq12d 7173 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
43 | 35, 36, 42 | 3eqtr4d 2803 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏)))) |
44 | 11, 22, 24, 25, 43 | mulcanad 11318 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏))) |
45 | | sqneg 13537 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2)) |
46 | 19, 45 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏↑2) = (𝑏↑2)) |
47 | 46 | oveq2d 7171 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (-𝑏↑2)) = (𝐷 · (𝑏↑2))) |
48 | 47 | oveq2d 7171 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2)))) |
49 | 48, 31 | eqtrd 2793 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1) |
50 | | oveq1 7162 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑎 → (𝑐 + ((√‘𝐷) · 𝑑)) = (𝑎 + ((√‘𝐷) · 𝑑))) |
51 | 50 | eqeq2d 2769 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑎 → ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ↔ (1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)))) |
52 | | oveq1 7162 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑎 → (𝑐↑2) = (𝑎↑2)) |
53 | 52 | oveq1d 7170 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑎 → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = ((𝑎↑2) − (𝐷 · (𝑑↑2)))) |
54 | 53 | eqeq1d 2760 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑎 → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1)) |
55 | 51, 54 | anbi12d 633 |
. . . . . . . . 9
⊢ (𝑐 = 𝑎 → (((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1))) |
56 | | oveq2 7163 |
. . . . . . . . . . . 12
⊢ (𝑑 = -𝑏 → ((√‘𝐷) · 𝑑) = ((√‘𝐷) · -𝑏)) |
57 | 56 | oveq2d 7171 |
. . . . . . . . . . 11
⊢ (𝑑 = -𝑏 → (𝑎 + ((√‘𝐷) · 𝑑)) = (𝑎 + ((√‘𝐷) · -𝑏))) |
58 | 57 | eqeq2d 2769 |
. . . . . . . . . 10
⊢ (𝑑 = -𝑏 → ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ↔ (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)))) |
59 | | oveq1 7162 |
. . . . . . . . . . . . 13
⊢ (𝑑 = -𝑏 → (𝑑↑2) = (-𝑏↑2)) |
60 | 59 | oveq2d 7171 |
. . . . . . . . . . . 12
⊢ (𝑑 = -𝑏 → (𝐷 · (𝑑↑2)) = (𝐷 · (-𝑏↑2))) |
61 | 60 | oveq2d 7171 |
. . . . . . . . . . 11
⊢ (𝑑 = -𝑏 → ((𝑎↑2) − (𝐷 · (𝑑↑2))) = ((𝑎↑2) − (𝐷 · (-𝑏↑2)))) |
62 | 61 | eqeq1d 2760 |
. . . . . . . . . 10
⊢ (𝑑 = -𝑏 → (((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) |
63 | 58, 62 | anbi12d 633 |
. . . . . . . . 9
⊢ (𝑑 = -𝑏 → (((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))) |
64 | 55, 63 | rspc2ev 3555 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤ ∧ -𝑏 ∈ ℤ ∧ ((1 /
𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) |
65 | 7, 9, 44, 49, 64 | syl112anc 1371 |
. . . . . . 7
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) |
66 | 6, 65 | jca 515 |
. . . . . 6
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((1 / 𝐴) ∈ ℝ ∧
∃𝑐 ∈ ℤ
∃𝑑 ∈ ℤ ((1
/ 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))) |
67 | 66 | ex 416 |
. . . . 5
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((1 / 𝐴) ∈ ℝ ∧
∃𝑐 ∈ ℤ
∃𝑑 ∈ ℤ ((1
/ 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))) |
68 | 67 | rexlimdvva 3218 |
. . . 4
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((1 / 𝐴) ∈ ℝ ∧
∃𝑐 ∈ ℤ
∃𝑑 ∈ ℤ ((1
/ 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))) |
69 | 68 | adantld 494 |
. . 3
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((1 / 𝐴) ∈ ℝ ∧
∃𝑐 ∈ ℤ
∃𝑑 ∈ ℤ ((1
/ 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))) |
70 | 2, 69 | mpd 15 |
. 2
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))) |
71 | | elpell1234qr 40193 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ↔ ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))) |
72 | 71 | adantr 484 |
. 2
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ↔ ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))) |
73 | 70, 72 | mpbird 260 |
1
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷)) |