Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrreccl Structured version   Visualization version   GIF version

Theorem pell1234qrreccl 40592
Description: General solutions of the Pell equation are closed under reciprocals. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrreccl ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷))

Proof of Theorem pell1234qrreccl
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 40589 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
21biimpa 476 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
3 pell1234qrre 40590 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ)
4 pell1234qrne0 40591 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0)
53, 4rereccld 11732 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ ℝ)
65ad2antrr 722 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) ∈ ℝ)
7 simplrl 773 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℤ)
8 simplrr 774 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℤ)
98znegcld 12357 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℤ)
105recnd 10934 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ ℂ)
1110ad2antrr 722 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) ∈ ℂ)
12 zcn 12254 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1312adantr 480 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
1413ad2antlr 723 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℂ)
15 eldifi 4057 . . . . . . . . . . . . . 14 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
1615nncnd 11919 . . . . . . . . . . . . 13 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
1716ad3antrrr 726 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℂ)
1817sqrtcld 15077 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
198zcnd 12356 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℂ)
2019negcld 11249 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℂ)
2118, 20mulcld 10926 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · -𝑏) ∈ ℂ)
2214, 21addcld 10925 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) ∈ ℂ)
233recnd 10934 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℂ)
2423ad2antrr 722 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℂ)
254ad2antrr 722 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0)
2618, 19sqmuld 13804 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (((√‘𝐷) · 𝑏)↑2) = (((√‘𝐷)↑2) · (𝑏↑2)))
2717sqsqrtd 15079 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷)↑2) = 𝐷)
2827oveq1d 7270 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (((√‘𝐷)↑2) · (𝑏↑2)) = (𝐷 · (𝑏↑2)))
2926, 28eqtr2d 2779 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (𝑏↑2)) = (((√‘𝐷) · 𝑏)↑2))
3029oveq2d 7271 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)))
31 simprr 769 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
3218, 19mulcld 10926 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · 𝑏) ∈ ℂ)
33 subsq 13854 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ ((√‘𝐷) · 𝑏) ∈ ℂ) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
3414, 32, 33syl2anc 583 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
3530, 31, 343eqtr3d 2786 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
3624, 25recidd 11676 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = 1)
37 simprl 767 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
3818, 19mulneg2d 11359 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · -𝑏) = -((√‘𝐷) · 𝑏))
3938oveq2d 7271 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 + -((√‘𝐷) · 𝑏)))
4014, 32negsubd 11268 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + -((√‘𝐷) · 𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏)))
4139, 40eqtrd 2778 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏)))
4237, 41oveq12d 7273 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
4335, 36, 423eqtr4d 2788 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))))
4411, 22, 24, 25, 43mulcanad 11540 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)))
45 sqneg 13764 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
4619, 45syl 17 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏↑2) = (𝑏↑2))
4746oveq2d 7271 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (-𝑏↑2)) = (𝐷 · (𝑏↑2)))
4847oveq2d 7271 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
4948, 31eqtrd 2778 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)
50 oveq1 7262 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝑐 + ((√‘𝐷) · 𝑑)) = (𝑎 + ((√‘𝐷) · 𝑑)))
5150eqeq2d 2749 . . . . . . . . . 10 (𝑐 = 𝑎 → ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ↔ (1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑))))
52 oveq1 7262 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐↑2) = (𝑎↑2))
5352oveq1d 7270 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = ((𝑎↑2) − (𝐷 · (𝑑↑2))))
5453eqeq1d 2740 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1))
5551, 54anbi12d 630 . . . . . . . . 9 (𝑐 = 𝑎 → (((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1)))
56 oveq2 7263 . . . . . . . . . . . 12 (𝑑 = -𝑏 → ((√‘𝐷) · 𝑑) = ((√‘𝐷) · -𝑏))
5756oveq2d 7271 . . . . . . . . . . 11 (𝑑 = -𝑏 → (𝑎 + ((√‘𝐷) · 𝑑)) = (𝑎 + ((√‘𝐷) · -𝑏)))
5857eqeq2d 2749 . . . . . . . . . 10 (𝑑 = -𝑏 → ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ↔ (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏))))
59 oveq1 7262 . . . . . . . . . . . . 13 (𝑑 = -𝑏 → (𝑑↑2) = (-𝑏↑2))
6059oveq2d 7271 . . . . . . . . . . . 12 (𝑑 = -𝑏 → (𝐷 · (𝑑↑2)) = (𝐷 · (-𝑏↑2)))
6160oveq2d 7271 . . . . . . . . . . 11 (𝑑 = -𝑏 → ((𝑎↑2) − (𝐷 · (𝑑↑2))) = ((𝑎↑2) − (𝐷 · (-𝑏↑2))))
6261eqeq1d 2740 . . . . . . . . . 10 (𝑑 = -𝑏 → (((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))
6358, 62anbi12d 630 . . . . . . . . 9 (𝑑 = -𝑏 → (((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)))
6455, 63rspc2ev 3564 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ -𝑏 ∈ ℤ ∧ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
657, 9, 44, 49, 64syl112anc 1372 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
666, 65jca 511 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))
6766ex 412 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6867rexlimdvva 3222 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6968adantld 490 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
702, 69mpd 15 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))
71 elpell1234qr 40589 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ↔ ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
7271adantr 480 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ↔ ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
7370, 72mpbird 256 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  cz 12249  cexp 13710  csqrt 14872  NNcsquarenn 40574  Pell1234QRcpell1234qr 40576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-pell1234qr 40582
This theorem is referenced by:  pell14qrreccl  40602
  Copyright terms: Public domain W3C validator