Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrne0 Structured version   Visualization version   GIF version

Theorem pell1234qrne0 40330
Description: No solution to a Pell equation is zero. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1234qrne0 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0)

Proof of Theorem pell1234qrne0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 40328 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 simprl 771 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
3 ax-1ne0 10781 . . . . . . . . 9 1 ≠ 0
4 eldifi 4031 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
54adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → 𝐷 ∈ ℕ)
65nncnd 11829 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → 𝐷 ∈ ℂ)
76ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝐷 ∈ ℂ)
87sqrtcld 14984 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (√‘𝐷) ∈ ℂ)
9 zcn 12164 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
109ad2antll 729 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
1110ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝑏 ∈ ℂ)
128, 11sqmuld 13711 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (((√‘𝐷) · 𝑏)↑2) = (((√‘𝐷)↑2) · (𝑏↑2)))
137sqsqrtd 14986 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((√‘𝐷)↑2) = 𝐷)
1413oveq1d 7217 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (((√‘𝐷)↑2) · (𝑏↑2)) = (𝐷 · (𝑏↑2)))
1512, 14eqtr2d 2775 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝐷 · (𝑏↑2)) = (((√‘𝐷) · 𝑏)↑2))
1615oveq2d 7218 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)))
17 zcn 12164 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1817ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
1918ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝑎 ∈ ℂ)
208, 11mulcld 10836 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((√‘𝐷) · 𝑏) ∈ ℂ)
21 subsq 13761 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℂ ∧ ((√‘𝐷) · 𝑏) ∈ ℂ) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
2219, 20, 21syl2anc 587 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
2316, 22eqtrd 2774 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
24 simplr 769 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
25 simpr 488 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝑎 + ((√‘𝐷) · 𝑏)) = 0)
2625oveq1d 7217 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))) = (0 · (𝑎 − ((√‘𝐷) · 𝑏))))
2719, 20subcld 11172 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝑎 − ((√‘𝐷) · 𝑏)) ∈ ℂ)
2827mul02d 11013 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (0 · (𝑎 − ((√‘𝐷) · 𝑏))) = 0)
2926, 28eqtrd 2774 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))) = 0)
3023, 24, 293eqtr3d 2782 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 1 = 0)
3130ex 416 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((𝑎 + ((√‘𝐷) · 𝑏)) = 0 → 1 = 0))
3231necon3d 2956 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (1 ≠ 0 → (𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0))
333, 32mpi 20 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0)
3433adantrl 716 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0)
352, 34eqnetrd 3002 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0)
3635ex 416 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐴 ≠ 0))
3736rexlimdvva 3206 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐴 ≠ 0))
3837expimpd 457 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0))
391, 38sylbid 243 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) → 𝐴 ≠ 0))
4039imp 410 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2935  wrex 3055  cdif 3854  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717  cmin 11045  cn 11813  2c2 11868  cz 12159  cexp 13618  csqrt 14779  NNcsquarenn 40313  Pell1234QRcpell1234qr 40315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-pell1234qr 40321
This theorem is referenced by:  pell1234qrreccl  40331  pell14qrne0  40335
  Copyright terms: Public domain W3C validator