Step | Hyp | Ref
| Expression |
1 | | elpell1234qr 40673 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
2 | | simprl 768 |
. . . . . . 7
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) |
3 | | ax-1ne0 10940 |
. . . . . . . . 9
⊢ 1 ≠
0 |
4 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 𝐷 ∈ ℕ) |
5 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) → 𝐷 ∈ ℕ) |
6 | 5 | nncnd 11989 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) → 𝐷 ∈ ℂ) |
7 | 6 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝐷 ∈ ℂ) |
8 | 7 | sqrtcld 15149 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (√‘𝐷) ∈
ℂ) |
9 | | zcn 12324 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ ℤ → 𝑏 ∈
ℂ) |
10 | 9 | ad2antll 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ) |
11 | 10 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝑏 ∈ ℂ) |
12 | 8, 11 | sqmuld 13876 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (((√‘𝐷) · 𝑏)↑2) = (((√‘𝐷)↑2) · (𝑏↑2))) |
13 | 7 | sqsqrtd 15151 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((√‘𝐷)↑2) = 𝐷) |
14 | 13 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (((√‘𝐷)↑2) · (𝑏↑2)) = (𝐷 · (𝑏↑2))) |
15 | 12, 14 | eqtr2d 2779 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝐷 · (𝑏↑2)) = (((√‘𝐷) · 𝑏)↑2)) |
16 | 15 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2))) |
17 | | zcn 12324 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
18 | 17 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ) |
19 | 18 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝑎 ∈ ℂ) |
20 | 8, 11 | mulcld 10995 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((√‘𝐷) · 𝑏) ∈ ℂ) |
21 | | subsq 13926 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℂ ∧
((√‘𝐷) ·
𝑏) ∈ ℂ) →
((𝑎↑2) −
(((√‘𝐷)
· 𝑏)↑2)) =
((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
22 | 19, 20, 21 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
23 | 16, 22 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
24 | | simplr 766 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) |
25 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝑎 + ((√‘𝐷) · 𝑏)) = 0) |
26 | 25 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))) = (0 · (𝑎 − ((√‘𝐷) · 𝑏)))) |
27 | 19, 20 | subcld 11332 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝑎 − ((√‘𝐷) · 𝑏)) ∈ ℂ) |
28 | 27 | mul02d 11173 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (0 · (𝑎 − ((√‘𝐷) · 𝑏))) = 0) |
29 | 26, 28 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))) = 0) |
30 | 23, 24, 29 | 3eqtr3d 2786 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 1 = 0) |
31 | 30 | ex 413 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((𝑎 + ((√‘𝐷) · 𝑏)) = 0 → 1 = 0)) |
32 | 31 | necon3d 2964 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (1 ≠ 0 →
(𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0)) |
33 | 3, 32 | mpi 20 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0) |
34 | 33 | adantrl 713 |
. . . . . . 7
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0) |
35 | 2, 34 | eqnetrd 3011 |
. . . . . 6
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0) |
36 | 35 | ex 413 |
. . . . 5
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐴 ≠ 0)) |
37 | 36 | rexlimdvva 3223 |
. . . 4
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐴 ≠ 0)) |
38 | 37 | expimpd 454 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0)) |
39 | 1, 38 | sylbid 239 |
. 2
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) → 𝐴 ≠ 0)) |
40 | 39 | imp 407 |
1
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0) |