Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrss1234 Structured version   Visualization version   GIF version

Theorem pell14qrss1234 40678
Description: A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrss1234 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷))

Proof of Theorem pell14qrss1234
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12343 . . . . . . 7 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
21a1i 11 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0𝑏 ∈ ℤ))
32anim1d 611 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑏 ∈ ℤ ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))))
43reximdv2 3199 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1) → ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))
54anim2d 612 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))))
6 elpell14qr 40671 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))))
7 elpell1234qr 40673 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1234QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))))
85, 6, 73imtr4d 294 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ (Pell1234QR‘𝐷)))
98ssrdv 3927 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  cdif 3884  wss 3887  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  cexp 13782  csqrt 14944  NNcsquarenn 40658  Pell1234QRcpell1234qr 40660  Pell14QRcpell14qr 40661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-i2m1 10939  ax-1ne0 10940  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-pell14qr 40665  df-pell1234qr 40666
This theorem is referenced by:  pell14qrre  40679  pell14qrne0  40680  elpell14qr2  40684
  Copyright terms: Public domain W3C validator