Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrss1234 Structured version   Visualization version   GIF version

Theorem pell14qrss1234 41584
Description: A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrss1234 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (Pell14QRโ€˜๐ท) โŠ† (Pell1234QRโ€˜๐ท))

Proof of Theorem pell14qrss1234
Dummy variables ๐‘Ž ๐‘ ๐‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12582 . . . . . . 7 (๐‘ โˆˆ โ„•0 โ†’ ๐‘ โˆˆ โ„ค)
21a1i 11 . . . . . 6 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐‘ โˆˆ โ„•0 โ†’ ๐‘ โˆˆ โ„ค))
32anim1d 611 . . . . 5 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ((๐‘ โˆˆ โ„•0 โˆง โˆƒ๐‘ โˆˆ โ„ค (๐‘Ž = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘ โˆˆ โ„ค โˆง โˆƒ๐‘ โˆˆ โ„ค (๐‘Ž = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
43reximdv2 3164 . . . 4 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (โˆƒ๐‘ โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐‘Ž = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐‘Ž = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)))
54anim2d 612 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ((๐‘Ž โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐‘Ž = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐‘Ž = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
6 elpell14qr 41577 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐‘Ž โˆˆ (Pell14QRโ€˜๐ท) โ†” (๐‘Ž โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐‘Ž = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
7 elpell1234qr 41579 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐‘Ž โˆˆ (Pell1234QRโ€˜๐ท) โ†” (๐‘Ž โˆˆ โ„ โˆง โˆƒ๐‘ โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐‘Ž = (๐‘ + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘โ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
85, 6, 73imtr4d 293 . 2 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐‘Ž โˆˆ (Pell14QRโ€˜๐ท) โ†’ ๐‘Ž โˆˆ (Pell1234QRโ€˜๐ท)))
98ssrdv 3988 1 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (Pell14QRโ€˜๐ท) โŠ† (Pell1234QRโ€˜๐ท))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106  โˆƒwrex 3070   โˆ– cdif 3945   โŠ† wss 3948  โ€˜cfv 6543  (class class class)co 7408  โ„cr 11108  1c1 11110   + caddc 11112   ยท cmul 11114   โˆ’ cmin 11443  โ„•cn 12211  2c2 12266  โ„•0cn0 12471  โ„คcz 12557  โ†‘cexp 14026  โˆšcsqrt 15179  โ—ปNNcsquarenn 41564  Pell1234QRcpell1234qr 41566  Pell14QRcpell14qr 41567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-i2m1 11177  ax-1ne0 11178  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-pell14qr 41571  df-pell1234qr 41572
This theorem is referenced by:  pell14qrre  41585  pell14qrne0  41586  elpell14qr2  41590
  Copyright terms: Public domain W3C validator