Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrss1234 Structured version   Visualization version   GIF version

Theorem pell14qrss1234 39797
Description: A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrss1234 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷))

Proof of Theorem pell14qrss1234
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 11993 . . . . . . 7 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
21a1i 11 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0𝑏 ∈ ℤ))
32anim1d 613 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑏 ∈ ℤ ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))))
43reximdv2 3230 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1) → ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))
54anim2d 614 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))))
6 elpell14qr 39790 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))))
7 elpell1234qr 39792 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1234QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))))
85, 6, 73imtr4d 297 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ (Pell1234QR‘𝐷)))
98ssrdv 3921 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  cdif 3878  wss 3881  cfv 6324  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  cexp 13425  csqrt 14584  NNcsquarenn 39777  Pell1234QRcpell1234qr 39779  Pell14QRcpell14qr 39780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-i2m1 10594  ax-1ne0 10595  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-pell14qr 39784  df-pell1234qr 39785
This theorem is referenced by:  pell14qrre  39798  pell14qrne0  39799  elpell14qr2  39803
  Copyright terms: Public domain W3C validator