![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell14qrss1234 | Structured version Visualization version GIF version |
Description: A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pell14qrss1234 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 11728 | . . . . . . 7 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ)) |
3 | 2 | anim1d 606 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑏 ∈ ℤ ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) |
4 | 3 | reximdv2 3222 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1) → ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))) |
5 | 4 | anim2d 607 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) |
6 | elpell14qr 38257 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) | |
7 | elpell1234qr 38259 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1234QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) | |
8 | 5, 6, 7 | 3imtr4d 286 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ (Pell1234QR‘𝐷))) |
9 | 8 | ssrdv 3833 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∃wrex 3118 ∖ cdif 3795 ⊆ wss 3798 ‘cfv 6123 (class class class)co 6905 ℝcr 10251 1c1 10253 + caddc 10255 · cmul 10257 − cmin 10585 ℕcn 11350 2c2 11406 ℕ0cn0 11618 ℤcz 11704 ↑cexp 13154 √csqrt 14350 ◻NNcsquarenn 38244 Pell1234QRcpell1234qr 38246 Pell14QRcpell14qr 38247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-i2m1 10320 ax-1ne0 10321 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-om 7327 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-pell14qr 38251 df-pell1234qr 38252 |
This theorem is referenced by: pell14qrre 38265 pell14qrne0 38266 elpell14qr2 38270 |
Copyright terms: Public domain | W3C validator |