![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell14qrss1234 | Structured version Visualization version GIF version |
Description: A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pell14qrss1234 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12664 | . . . . . . 7 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ)) |
3 | 2 | anim1d 610 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑏 ∈ ℤ ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) |
4 | 3 | reximdv2 3170 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1) → ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))) |
5 | 4 | anim2d 611 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) |
6 | elpell14qr 42805 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) | |
7 | elpell1234qr 42807 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1234QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) | |
8 | 5, 6, 7 | 3imtr4d 294 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ (Pell1234QR‘𝐷))) |
9 | 8 | ssrdv 4014 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∖ cdif 3973 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 ℕcn 12293 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ↑cexp 14112 √csqrt 15282 ◻NNcsquarenn 42792 Pell1234QRcpell1234qr 42794 Pell14QRcpell14qr 42795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-pell14qr 42799 df-pell1234qr 42800 |
This theorem is referenced by: pell14qrre 42813 pell14qrne0 42814 elpell14qr2 42818 |
Copyright terms: Public domain | W3C validator |