![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell14qrss1234 | Structured version Visualization version GIF version |
Description: A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pell14qrss1234 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12636 | . . . . . . 7 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ)) |
3 | 2 | anim1d 611 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑏 ∈ ℤ ∧ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) |
4 | 3 | reximdv2 3162 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1) → ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1))) |
5 | 4 | anim2d 612 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) |
6 | elpell14qr 42837 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℕ0 ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) | |
7 | elpell1234qr 42839 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1234QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ (𝑎 = (𝑏 + ((√‘𝐷) · 𝑐)) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 1)))) | |
8 | 5, 6, 7 | 3imtr4d 294 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ (Pell1234QR‘𝐷))) |
9 | 8 | ssrdv 4001 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ∖ cdif 3960 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 · cmul 11158 − cmin 11490 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤcz 12611 ↑cexp 14099 √csqrt 15269 ◻NNcsquarenn 42824 Pell1234QRcpell1234qr 42826 Pell14QRcpell14qr 42827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-pell14qr 42831 df-pell1234qr 42832 |
This theorem is referenced by: pell14qrre 42845 pell14qrne0 42846 elpell14qr2 42850 |
Copyright terms: Public domain | W3C validator |