Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrre Structured version   Visualization version   GIF version

Theorem pell1234qrre 37942
Description: General Pell solutions are (coded as) real numbers. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1234qrre ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ)

Proof of Theorem pell1234qrre
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 37941 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
21simprbda 486 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wrex 3062  cdif 3720  cfv 6031  (class class class)co 6793  cr 10137  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468  cn 11222  2c2 11272  cz 11579  cexp 13067  csqrt 14181  NNcsquarenn 37926  Pell1234QRcpell1234qr 37928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-cnex 10194  ax-resscn 10195
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-pell1234qr 37934
This theorem is referenced by:  pell1234qrreccl  37944  pell14qrre  37947  elpell14qr2  37952  pell14qrmulcl  37953  pell14qrreccl  37954
  Copyright terms: Public domain W3C validator