| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pell1qrgap | Structured version Visualization version GIF version | ||
| Description: First-quadrant Pell solutions are bounded away from 1. (This particular bound allows to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| Ref | Expression |
|---|---|
| pell1qrgap | ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpell1qr 42950 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
| 3 | eldifi 4078 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
| 4 | 3 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℕ) |
| 5 | simplr 768 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) | |
| 6 | simp-4r 783 | . . . . . . . . . . 11 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 < 𝐴) | |
| 7 | simprl 770 | . . . . . . . . . . 11 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) | |
| 8 | 6, 7 | breqtrd 5115 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 < (𝑎 + ((√‘𝐷) · 𝑏))) |
| 9 | simprr 772 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) | |
| 10 | pell1qrgaplem 42976 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ ℕ ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (1 < (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝑎 + ((√‘𝐷) · 𝑏))) | |
| 11 | 4, 5, 8, 9, 10 | syl22anc 838 | . . . . . . . . 9 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝑎 + ((√‘𝐷) · 𝑏))) |
| 12 | 11, 7 | breqtrrd 5117 | . . . . . . . 8 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
| 13 | 12 | ex 412 | . . . . . . 7 ⊢ ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
| 14 | 13 | rexlimdvva 3189 | . . . . . 6 ⊢ (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
| 15 | 14 | expimpd 453 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
| 16 | 2, 15 | sylbid 240 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
| 17 | 16 | ex 412 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 < 𝐴 → (𝐴 ∈ (Pell1QR‘𝐷) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))) |
| 18 | 17 | com23 86 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) → (1 < 𝐴 → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))) |
| 19 | 18 | 3imp 1110 | 1 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∖ cdif 3894 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 · cmul 11011 < clt 11146 ≤ cle 11147 − cmin 11344 ℕcn 12125 2c2 12180 ℕ0cn0 12381 ↑cexp 13968 √csqrt 15140 ◻NNcsquarenn 42939 Pell1QRcpell1qr 42940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-pell1qr 42945 |
| This theorem is referenced by: pell14qrgap 42978 |
| Copyright terms: Public domain | W3C validator |