![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell1qrgap | Structured version Visualization version GIF version |
Description: First-quadrant Pell solutions are bounded away from 1. (This particular bound allows us to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pell1qrgap | ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpell1qr 38950 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
3 | eldifi 4030 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
4 | 3 | ad4antr 728 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℕ) |
5 | simplr 765 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) | |
6 | simp-4r 780 | . . . . . . . . . . 11 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 < 𝐴) | |
7 | simprl 767 | . . . . . . . . . . 11 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) | |
8 | 6, 7 | breqtrd 4994 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 < (𝑎 + ((√‘𝐷) · 𝑏))) |
9 | simprr 769 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) | |
10 | pell1qrgaplem 38976 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ ℕ ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (1 < (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝑎 + ((√‘𝐷) · 𝑏))) | |
11 | 4, 5, 8, 9, 10 | syl22anc 835 | . . . . . . . . 9 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝑎 + ((√‘𝐷) · 𝑏))) |
12 | 11, 7 | breqtrrd 4996 | . . . . . . . 8 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
13 | 12 | ex 413 | . . . . . . 7 ⊢ ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
14 | 13 | rexlimdvva 3259 | . . . . . 6 ⊢ (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
15 | 14 | expimpd 454 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
16 | 2, 15 | sylbid 241 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
17 | 16 | ex 413 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 < 𝐴 → (𝐴 ∈ (Pell1QR‘𝐷) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))) |
18 | 17 | com23 86 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) → (1 < 𝐴 → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))) |
19 | 18 | 3imp 1104 | 1 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∃wrex 3108 ∖ cdif 3862 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 ℝcr 10389 1c1 10391 + caddc 10393 · cmul 10395 < clt 10528 ≤ cle 10529 − cmin 10723 ℕcn 11492 2c2 11546 ℕ0cn0 11751 ↑cexp 13283 √csqrt 14430 ◻NNcsquarenn 38939 Pell1QRcpell1qr 38940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-sup 8759 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-n0 11752 df-z 11836 df-uz 12098 df-rp 12244 df-seq 13224 df-exp 13284 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-pell1qr 38945 |
This theorem is referenced by: pell14qrgap 38978 |
Copyright terms: Public domain | W3C validator |