Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgap Structured version   Visualization version   GIF version

Theorem pell1qrgap 42861
Description: First-quadrant Pell solutions are bounded away from 1. (This particular bound allows to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgap ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)

Proof of Theorem pell1qrgap
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1qr 42834 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
21adantr 480 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3 eldifi 4140 . . . . . . . . . . 11 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
43ad4antr 732 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℕ)
5 simplr 769 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 ∈ ℕ0𝑏 ∈ ℕ0))
6 simp-4r 784 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 < 𝐴)
7 simprl 771 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
86, 7breqtrd 5173 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 < (𝑎 + ((√‘𝐷) · 𝑏)))
9 simprr 773 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
10 pell1qrgaplem 42860 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (1 < (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝑎 + ((√‘𝐷) · 𝑏)))
114, 5, 8, 9, 10syl22anc 839 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝑎 + ((√‘𝐷) · 𝑏)))
1211, 7breqtrrd 5175 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)
1312ex 412 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))
1413rexlimdvva 3210 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))
1514expimpd 453 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))
162, 15sylbid 240 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))
1716ex 412 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 < 𝐴 → (𝐴 ∈ (Pell1QR‘𝐷) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)))
1817com23 86 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) → (1 < 𝐴 → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)))
19183imp 1110 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wrex 3067  cdif 3959   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  cn 12263  2c2 12318  0cn0 12523  cexp 14098  csqrt 15268  NNcsquarenn 42823  Pell1QRcpell1qr 42824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-pell1qr 42829
This theorem is referenced by:  pell14qrgap  42862
  Copyright terms: Public domain W3C validator