![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell1qrgap | Structured version Visualization version GIF version |
Description: First-quadrant Pell solutions are bounded away from 1. (This particular bound allows to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pell1qrgap | ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpell1qr 41518 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) | |
2 | 1 | adantr 482 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
3 | eldifi 4125 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
4 | 3 | ad4antr 731 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℕ) |
5 | simplr 768 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) | |
6 | simp-4r 783 | . . . . . . . . . . 11 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 < 𝐴) | |
7 | simprl 770 | . . . . . . . . . . 11 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) | |
8 | 6, 7 | breqtrd 5173 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 < (𝑎 + ((√‘𝐷) · 𝑏))) |
9 | simprr 772 | . . . . . . . . . 10 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) | |
10 | pell1qrgaplem 41544 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ ℕ ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (1 < (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝑎 + ((√‘𝐷) · 𝑏))) | |
11 | 4, 5, 8, 9, 10 | syl22anc 838 | . . . . . . . . 9 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝑎 + ((√‘𝐷) · 𝑏))) |
12 | 11, 7 | breqtrrd 5175 | . . . . . . . 8 ⊢ (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
13 | 12 | ex 414 | . . . . . . 7 ⊢ ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
14 | 13 | rexlimdvva 3212 | . . . . . 6 ⊢ (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
15 | 14 | expimpd 455 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
16 | 2, 15 | sylbid 239 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴)) |
17 | 16 | ex 414 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 < 𝐴 → (𝐴 ∈ (Pell1QR‘𝐷) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))) |
18 | 17 | com23 86 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) → (1 < 𝐴 → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴))) |
19 | 18 | 3imp 1112 | 1 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∖ cdif 3944 class class class wbr 5147 ‘cfv 6540 (class class class)co 7404 ℝcr 11105 1c1 11107 + caddc 11109 · cmul 11111 < clt 11244 ≤ cle 11245 − cmin 11440 ℕcn 12208 2c2 12263 ℕ0cn0 12468 ↑cexp 14023 √csqrt 15176 ◻NNcsquarenn 41507 Pell1QRcpell1qr 41508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-pell1qr 41513 |
This theorem is referenced by: pell14qrgap 41546 |
Copyright terms: Public domain | W3C validator |