Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrge1 Structured version   Visualization version   GIF version

Theorem pell1qrge1 42354
Description: A Pell solution in the first quadrant is at least 1. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qrge1 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1QRโ€˜๐ท)) โ†’ 1 โ‰ค ๐ด)

Proof of Theorem pell1qrge1
Dummy variables ๐‘Ž ๐‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1qr 42331 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โ†” (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
2 1red 11243 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 1 โˆˆ โ„)
3 simplrl 775 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘Ž โˆˆ โ„•0)
43nn0red 12561 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘Ž โˆˆ โ„)
5 eldifi 4119 . . . . . . . . . . . . . . 15 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ๐ท โˆˆ โ„•)
65ad3antrrr 728 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐ท โˆˆ โ„•)
76nnnn0d 12560 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐ท โˆˆ โ„•0)
87nn0red 12561 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐ท โˆˆ โ„)
97nn0ge0d 12563 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค ๐ท)
108, 9resqrtcld 15394 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (โˆšโ€˜๐ท) โˆˆ โ„)
11 simplrr 776 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘ โˆˆ โ„•0)
1211nn0red 12561 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘ โˆˆ โ„)
1310, 12remulcld 11272 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„)
144, 13readdcld 11271 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆˆ โ„)
15 2nn0 12517 . . . . . . . . . . . . . . . 16 2 โˆˆ โ„•0
1615a1i 11 . . . . . . . . . . . . . . 15 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 2 โˆˆ โ„•0)
1711, 16nn0expcld 14238 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐‘โ†‘2) โˆˆ โ„•0)
187, 17nn0mulcld 12565 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐ท ยท (๐‘โ†‘2)) โˆˆ โ„•0)
1918nn0ge0d 12563 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค (๐ท ยท (๐‘โ†‘2)))
2018nn0red 12561 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐ท ยท (๐‘โ†‘2)) โˆˆ โ„)
212, 20addge02d 11831 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (0 โ‰ค (๐ท ยท (๐‘โ†‘2)) โ†” 1 โ‰ค ((๐ท ยท (๐‘โ†‘2)) + 1)))
2219, 21mpbid 231 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 1 โ‰ค ((๐ท ยท (๐‘โ†‘2)) + 1))
23 sq1 14188 . . . . . . . . . . . 12 (1โ†‘2) = 1
2423a1i 11 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (1โ†‘2) = 1)
25 nn0cn 12510 . . . . . . . . . . . . . . . 16 (๐‘Ž โˆˆ โ„•0 โ†’ ๐‘Ž โˆˆ โ„‚)
2625ad2antrl 726 . . . . . . . . . . . . . . 15 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ ๐‘Ž โˆˆ โ„‚)
2726sqcld 14138 . . . . . . . . . . . . . 14 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ (๐‘Žโ†‘2) โˆˆ โ„‚)
285ad2antrr 724 . . . . . . . . . . . . . . . 16 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ ๐ท โˆˆ โ„•)
2928nncnd 12256 . . . . . . . . . . . . . . 15 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ ๐ท โˆˆ โ„‚)
30 nn0cn 12510 . . . . . . . . . . . . . . . . 17 (๐‘ โˆˆ โ„•0 โ†’ ๐‘ โˆˆ โ„‚)
3130ad2antll 727 . . . . . . . . . . . . . . . 16 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ ๐‘ โˆˆ โ„‚)
3231sqcld 14138 . . . . . . . . . . . . . . 15 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ (๐‘โ†‘2) โˆˆ โ„‚)
3329, 32mulcld 11262 . . . . . . . . . . . . . 14 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ (๐ท ยท (๐‘โ†‘2)) โˆˆ โ„‚)
34 1cnd 11237 . . . . . . . . . . . . . 14 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ 1 โˆˆ โ„‚)
3527, 33, 34subaddd 11617 . . . . . . . . . . . . 13 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ (((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1 โ†” ((๐ท ยท (๐‘โ†‘2)) + 1) = (๐‘Žโ†‘2)))
3635biimpa 475 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((๐ท ยท (๐‘โ†‘2)) + 1) = (๐‘Žโ†‘2))
3736eqcomd 2731 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐‘Žโ†‘2) = ((๐ท ยท (๐‘โ†‘2)) + 1))
3822, 24, 373brtr4d 5175 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (1โ†‘2) โ‰ค (๐‘Žโ†‘2))
39 0le1 11765 . . . . . . . . . . . 12 0 โ‰ค 1
4039a1i 11 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค 1)
413nn0ge0d 12563 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค ๐‘Ž)
422, 4, 40, 41le2sqd 14249 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (1 โ‰ค ๐‘Ž โ†” (1โ†‘2) โ‰ค (๐‘Žโ†‘2)))
4338, 42mpbird 256 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 1 โ‰ค ๐‘Ž)
448, 9sqrtge0d 15397 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค (โˆšโ€˜๐ท))
4511nn0ge0d 12563 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค ๐‘)
4610, 12, 44, 45mulge0d 11819 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค ((โˆšโ€˜๐ท) ยท ๐‘))
474, 13addge01d 11830 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (0 โ‰ค ((โˆšโ€˜๐ท) ยท ๐‘) โ†” ๐‘Ž โ‰ค (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))))
4846, 47mpbid 231 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘Ž โ‰ค (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
492, 4, 14, 43, 48letrd 11399 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 1 โ‰ค (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
5049adantrl 714 . . . . . . 7 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ 1 โ‰ค (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
51 simprl 769 . . . . . . 7 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
5250, 51breqtrrd 5171 . . . . . 6 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ 1 โ‰ค ๐ด)
5352ex 411 . . . . 5 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0)) โ†’ ((๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 1 โ‰ค ๐ด))
5453rexlimdvva 3202 . . . 4 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โ†’ (โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 1 โ‰ค ๐ด))
5554expimpd 452 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ((๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ 1 โ‰ค ๐ด))
561, 55sylbid 239 . 2 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โ†’ 1 โ‰ค ๐ด))
5756imp 405 1 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell1QRโ€˜๐ท)) โ†’ 1 โ‰ค ๐ด)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   = wceq 1533   โˆˆ wcel 2098  โˆƒwrex 3060   โˆ– cdif 3937   class class class wbr 5143  โ€˜cfv 6542  (class class class)co 7415  โ„‚cc 11134  โ„cr 11135  0cc0 11136  1c1 11137   + caddc 11139   ยท cmul 11141   โ‰ค cle 11277   โˆ’ cmin 11472  โ„•cn 12240  2c2 12295  โ„•0cn0 12500  โ†‘cexp 14056  โˆšcsqrt 15210  โ—ปNNcsquarenn 42320  Pell1QRcpell1qr 42321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-seq 13997  df-exp 14057  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-pell1qr 42326
This theorem is referenced by:  elpell1qr2  42356
  Copyright terms: Public domain W3C validator