Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrge1 Structured version   Visualization version   GIF version

Theorem pell1qrge1 42865
Description: A Pell solution in the first quadrant is at least 1. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qrge1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴)

Proof of Theorem pell1qrge1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1qr 42842 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 1red 11182 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 1 ∈ ℝ)
3 simplrl 776 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑎 ∈ ℕ0)
43nn0red 12511 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑎 ∈ ℝ)
5 eldifi 4097 . . . . . . . . . . . . . . 15 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
65ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℕ)
76nnnn0d 12510 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℕ0)
87nn0red 12511 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℝ)
97nn0ge0d 12513 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ 𝐷)
108, 9resqrtcld 15391 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (√‘𝐷) ∈ ℝ)
11 simplrr 777 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑏 ∈ ℕ0)
1211nn0red 12511 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑏 ∈ ℝ)
1310, 12remulcld 11211 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘𝐷) · 𝑏) ∈ ℝ)
144, 13readdcld 11210 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎 + ((√‘𝐷) · 𝑏)) ∈ ℝ)
15 2nn0 12466 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
1615a1i 11 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 2 ∈ ℕ0)
1711, 16nn0expcld 14218 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑏↑2) ∈ ℕ0)
187, 17nn0mulcld 12515 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐷 · (𝑏↑2)) ∈ ℕ0)
1918nn0ge0d 12513 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ (𝐷 · (𝑏↑2)))
2018nn0red 12511 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐷 · (𝑏↑2)) ∈ ℝ)
212, 20addge02d 11774 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (0 ≤ (𝐷 · (𝑏↑2)) ↔ 1 ≤ ((𝐷 · (𝑏↑2)) + 1)))
2219, 21mpbid 232 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 1 ≤ ((𝐷 · (𝑏↑2)) + 1))
23 sq1 14167 . . . . . . . . . . . 12 (1↑2) = 1
2423a1i 11 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (1↑2) = 1)
25 nn0cn 12459 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
2625ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑎 ∈ ℂ)
2726sqcld 14116 . . . . . . . . . . . . . 14 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → (𝑎↑2) ∈ ℂ)
285ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝐷 ∈ ℕ)
2928nncnd 12209 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝐷 ∈ ℂ)
30 nn0cn 12459 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
3130ad2antll 729 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑏 ∈ ℂ)
3231sqcld 14116 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → (𝑏↑2) ∈ ℂ)
3329, 32mulcld 11201 . . . . . . . . . . . . . 14 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → (𝐷 · (𝑏↑2)) ∈ ℂ)
34 1cnd 11176 . . . . . . . . . . . . . 14 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 1 ∈ ℂ)
3527, 33, 34subaddd 11558 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐷 · (𝑏↑2)) + 1) = (𝑎↑2)))
3635biimpa 476 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((𝐷 · (𝑏↑2)) + 1) = (𝑎↑2))
3736eqcomd 2736 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎↑2) = ((𝐷 · (𝑏↑2)) + 1))
3822, 24, 373brtr4d 5142 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (1↑2) ≤ (𝑎↑2))
39 0le1 11708 . . . . . . . . . . . 12 0 ≤ 1
4039a1i 11 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ 1)
413nn0ge0d 12513 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ 𝑎)
422, 4, 40, 41le2sqd 14229 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (1 ≤ 𝑎 ↔ (1↑2) ≤ (𝑎↑2)))
4338, 42mpbird 257 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 1 ≤ 𝑎)
448, 9sqrtge0d 15394 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ (√‘𝐷))
4511nn0ge0d 12513 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ 𝑏)
4610, 12, 44, 45mulge0d 11762 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ ((√‘𝐷) · 𝑏))
474, 13addge01d 11773 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (0 ≤ ((√‘𝐷) · 𝑏) ↔ 𝑎 ≤ (𝑎 + ((√‘𝐷) · 𝑏))))
4846, 47mpbid 232 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑎 ≤ (𝑎 + ((√‘𝐷) · 𝑏)))
492, 4, 14, 43, 48letrd 11338 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 1 ≤ (𝑎 + ((√‘𝐷) · 𝑏)))
5049adantrl 716 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 ≤ (𝑎 + ((√‘𝐷) · 𝑏)))
51 simprl 770 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
5250, 51breqtrrd 5138 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 ≤ 𝐴)
5352ex 412 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 1 ≤ 𝐴))
5453rexlimdvva 3195 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 1 ≤ 𝐴))
5554expimpd 453 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 ≤ 𝐴))
561, 55sylbid 240 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) → 1 ≤ 𝐴))
5756imp 406 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  cdif 3914   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  cn 12193  2c2 12248  0cn0 12449  cexp 14033  csqrt 15206  NNcsquarenn 42831  Pell1QRcpell1qr 42832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-pell1qr 42837
This theorem is referenced by:  elpell1qr2  42867
  Copyright terms: Public domain W3C validator