Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrexplicit Structured version   Visualization version   GIF version

Theorem pellqrexplicit 39481
Description: Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellqrexplicit (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellqrexplicit
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0re 11909 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
213ad2ant2 1130 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
3 eldifi 4105 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
433ad2ant1 1129 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℕ)
54nnrpd 12432 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℝ+)
65rpsqrtcld 14773 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ+)
76rpred 12434 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ)
8 nn0re 11909 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
983ad2ant3 1131 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
107, 9remulcld 10673 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((√‘𝐷) · 𝐵) ∈ ℝ)
112, 10readdcld 10672 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
1211adantr 483 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
13 simpl2 1188 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐴 ∈ ℕ0)
14 simpl3 1189 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐵 ∈ ℕ0)
15 eqidd 2824 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)))
16 simpr 487 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
17 oveq1 7165 . . . . . 6 (𝑎 = 𝐴 → (𝑎 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝑏)))
1817eqeq2d 2834 . . . . 5 (𝑎 = 𝐴 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏))))
19 oveq1 7165 . . . . . . 7 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
2019oveq1d 7173 . . . . . 6 (𝑎 = 𝐴 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝑏↑2))))
2120eqeq1d 2825 . . . . 5 (𝑎 = 𝐴 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1))
2218, 21anbi12d 632 . . . 4 (𝑎 = 𝐴 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1)))
23 oveq2 7166 . . . . . . 7 (𝑏 = 𝐵 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 𝐵))
2423oveq2d 7174 . . . . . 6 (𝑏 = 𝐵 → (𝐴 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝐵)))
2524eqeq2d 2834 . . . . 5 (𝑏 = 𝐵 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵))))
26 oveq1 7165 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2))
2726oveq2d 7174 . . . . . . 7 (𝑏 = 𝐵 → (𝐷 · (𝑏↑2)) = (𝐷 · (𝐵↑2)))
2827oveq2d 7174 . . . . . 6 (𝑏 = 𝐵 → ((𝐴↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
2928eqeq1d 2825 . . . . 5 (𝑏 = 𝐵 → (((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1))
3025, 29anbi12d 632 . . . 4 (𝑏 = 𝐵 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)))
3122, 30rspc2ev 3637 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
3213, 14, 15, 16, 31syl112anc 1370 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
33 elpell1qr 39451 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
34333ad2ant1 1129 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3534adantr 483 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3612, 32, 35mpbir2and 711 1 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  cdif 3935  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  cn 11640  2c2 11695  0cn0 11900  cexp 13432  csqrt 14594  NNcsquarenn 39440  Pell1QRcpell1qr 39441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-pell1qr 39446
This theorem is referenced by:  pellqrex  39483  rmspecfund  39513
  Copyright terms: Public domain W3C validator