Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrexplicit Structured version   Visualization version   GIF version

Theorem pellqrexplicit 42969
Description: Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellqrexplicit (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellqrexplicit
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0re 12390 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
213ad2ant2 1134 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
3 eldifi 4078 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
433ad2ant1 1133 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℕ)
54nnrpd 12932 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℝ+)
65rpsqrtcld 15319 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ+)
76rpred 12934 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ)
8 nn0re 12390 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
983ad2ant3 1135 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
107, 9remulcld 11142 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((√‘𝐷) · 𝐵) ∈ ℝ)
112, 10readdcld 11141 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
1211adantr 480 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
13 simpl2 1193 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐴 ∈ ℕ0)
14 simpl3 1194 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐵 ∈ ℕ0)
15 eqidd 2732 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)))
16 simpr 484 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
17 oveq1 7353 . . . . . 6 (𝑎 = 𝐴 → (𝑎 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝑏)))
1817eqeq2d 2742 . . . . 5 (𝑎 = 𝐴 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏))))
19 oveq1 7353 . . . . . . 7 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
2019oveq1d 7361 . . . . . 6 (𝑎 = 𝐴 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝑏↑2))))
2120eqeq1d 2733 . . . . 5 (𝑎 = 𝐴 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1))
2218, 21anbi12d 632 . . . 4 (𝑎 = 𝐴 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1)))
23 oveq2 7354 . . . . . . 7 (𝑏 = 𝐵 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 𝐵))
2423oveq2d 7362 . . . . . 6 (𝑏 = 𝐵 → (𝐴 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝐵)))
2524eqeq2d 2742 . . . . 5 (𝑏 = 𝐵 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵))))
26 oveq1 7353 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2))
2726oveq2d 7362 . . . . . . 7 (𝑏 = 𝐵 → (𝐷 · (𝑏↑2)) = (𝐷 · (𝐵↑2)))
2827oveq2d 7362 . . . . . 6 (𝑏 = 𝐵 → ((𝐴↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
2928eqeq1d 2733 . . . . 5 (𝑏 = 𝐵 → (((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1))
3025, 29anbi12d 632 . . . 4 (𝑏 = 𝐵 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)))
3122, 30rspc2ev 3585 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
3213, 14, 15, 16, 31syl112anc 1376 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
33 elpell1qr 42939 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
34333ad2ant1 1133 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3534adantr 480 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3612, 32, 35mpbir2and 713 1 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cdif 3894  cfv 6481  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cexp 13968  csqrt 15140  NNcsquarenn 42928  Pell1QRcpell1qr 42929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-pell1qr 42934
This theorem is referenced by:  pellqrex  42971  rmspecfund  43001
  Copyright terms: Public domain W3C validator