Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrexplicit Structured version   Visualization version   GIF version

Theorem pellqrexplicit 38911
Description: Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellqrexplicit (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellqrexplicit
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0re 11723 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
213ad2ant2 1115 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
3 eldifi 3995 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
433ad2ant1 1114 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℕ)
54nnrpd 12252 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℝ+)
65rpsqrtcld 14638 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ+)
76rpred 12254 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ)
8 nn0re 11723 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
983ad2ant3 1116 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
107, 9remulcld 10476 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((√‘𝐷) · 𝐵) ∈ ℝ)
112, 10readdcld 10475 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
1211adantr 473 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
13 simpl2 1173 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐴 ∈ ℕ0)
14 simpl3 1174 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐵 ∈ ℕ0)
15 eqidd 2781 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)))
16 simpr 477 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
17 oveq1 6989 . . . . . 6 (𝑎 = 𝐴 → (𝑎 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝑏)))
1817eqeq2d 2790 . . . . 5 (𝑎 = 𝐴 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏))))
19 oveq1 6989 . . . . . . 7 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
2019oveq1d 6997 . . . . . 6 (𝑎 = 𝐴 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝑏↑2))))
2120eqeq1d 2782 . . . . 5 (𝑎 = 𝐴 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1))
2218, 21anbi12d 622 . . . 4 (𝑎 = 𝐴 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1)))
23 oveq2 6990 . . . . . . 7 (𝑏 = 𝐵 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 𝐵))
2423oveq2d 6998 . . . . . 6 (𝑏 = 𝐵 → (𝐴 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝐵)))
2524eqeq2d 2790 . . . . 5 (𝑏 = 𝐵 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵))))
26 oveq1 6989 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2))
2726oveq2d 6998 . . . . . . 7 (𝑏 = 𝐵 → (𝐷 · (𝑏↑2)) = (𝐷 · (𝐵↑2)))
2827oveq2d 6998 . . . . . 6 (𝑏 = 𝐵 → ((𝐴↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
2928eqeq1d 2782 . . . . 5 (𝑏 = 𝐵 → (((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1))
3025, 29anbi12d 622 . . . 4 (𝑏 = 𝐵 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)))
3122, 30rspc2ev 3552 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
3213, 14, 15, 16, 31syl112anc 1355 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
33 elpell1qr 38881 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
34333ad2ant1 1114 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3534adantr 473 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3612, 32, 35mpbir2and 701 1 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wrex 3091  cdif 3828  cfv 6193  (class class class)co 6982  cr 10340  1c1 10342   + caddc 10344   · cmul 10346  cmin 10676  cn 11445  2c2 11501  0cn0 11713  cexp 13250  csqrt 14459  NNcsquarenn 38870  Pell1QRcpell1qr 38871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-er 8095  df-en 8313  df-dom 8314  df-sdom 8315  df-sup 8707  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-z 11800  df-uz 12065  df-rp 12211  df-seq 13191  df-exp 13251  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-pell1qr 38876
This theorem is referenced by:  pellqrex  38913  rmspecfund  38943
  Copyright terms: Public domain W3C validator