Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qr1 Structured version   Visualization version   GIF version

Theorem pell1qr1 42098
Description: 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qr1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))

Proof of Theorem pell1qr1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11212 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 1nn0 12485 . . . 4 1 ∈ ℕ0
32a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℕ0)
4 0nn0 12484 . . . 4 0 ∈ ℕ0
54a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℕ0)
6 eldifi 4118 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
76nncnd 12225 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
87sqrtcld 15381 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℂ)
98mul01d 11410 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘𝐷) · 0) = 0)
109oveq2d 7417 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 + ((√‘𝐷) · 0)) = (1 + 0))
11 1p0e1 12333 . . . 4 (1 + 0) = 1
1210, 11eqtr2di 2781 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 = (1 + ((√‘𝐷) · 0)))
13 sq1 14156 . . . . . 6 (1↑2) = 1
1413a1i 11 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1↑2) = 1)
15 sq0 14153 . . . . . . 7 (0↑2) = 0
1615oveq2i 7412 . . . . . 6 (𝐷 · (0↑2)) = (𝐷 · 0)
177mul01d 11410 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · 0) = 0)
1816, 17eqtrid 2776 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · (0↑2)) = 0)
1914, 18oveq12d 7419 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = (1 − 0))
20 1m0e1 12330 . . . 4 (1 − 0) = 1
2119, 20eqtrdi 2780 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = 1)
22 oveq1 7408 . . . . . 6 (𝑎 = 1 → (𝑎 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 𝑏)))
2322eqeq2d 2735 . . . . 5 (𝑎 = 1 → (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 𝑏))))
24 oveq1 7408 . . . . . . 7 (𝑎 = 1 → (𝑎↑2) = (1↑2))
2524oveq1d 7416 . . . . . 6 (𝑎 = 1 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (𝑏↑2))))
2625eqeq1d 2726 . . . . 5 (𝑎 = 1 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (𝑏↑2))) = 1))
2723, 26anbi12d 630 . . . 4 (𝑎 = 1 → ((1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1)))
28 oveq2 7409 . . . . . . 7 (𝑏 = 0 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 0))
2928oveq2d 7417 . . . . . 6 (𝑏 = 0 → (1 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 0)))
3029eqeq2d 2735 . . . . 5 (𝑏 = 0 → (1 = (1 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 0))))
31 oveq1 7408 . . . . . . . 8 (𝑏 = 0 → (𝑏↑2) = (0↑2))
3231oveq2d 7417 . . . . . . 7 (𝑏 = 0 → (𝐷 · (𝑏↑2)) = (𝐷 · (0↑2)))
3332oveq2d 7417 . . . . . 6 (𝑏 = 0 → ((1↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (0↑2))))
3433eqeq1d 2726 . . . . 5 (𝑏 = 0 → (((1↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (0↑2))) = 1))
3530, 34anbi12d 630 . . . 4 (𝑏 = 0 → ((1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)))
3627, 35rspc2ev 3616 . . 3 ((1 ∈ ℕ0 ∧ 0 ∈ ℕ0 ∧ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
373, 5, 12, 21, 36syl112anc 1371 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
38 elpell1qr 42074 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ∈ (Pell1QR‘𝐷) ↔ (1 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
391, 37, 38mpbir2and 710 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wrex 3062  cdif 3937  cfv 6533  (class class class)co 7401  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  cmin 11441  cn 12209  2c2 12264  0cn0 12469  cexp 14024  csqrt 15177  NNcsquarenn 42063  Pell1QRcpell1qr 42064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-pell1qr 42069
This theorem is referenced by:  elpell1qr2  42099
  Copyright terms: Public domain W3C validator