Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qr1 Structured version   Visualization version   GIF version

Theorem pell1qr1 42894
Description: 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qr1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))

Proof of Theorem pell1qr1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11236 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 1nn0 12517 . . . 4 1 ∈ ℕ0
32a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℕ0)
4 0nn0 12516 . . . 4 0 ∈ ℕ0
54a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℕ0)
6 eldifi 4106 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
76nncnd 12256 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
87sqrtcld 15456 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℂ)
98mul01d 11434 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘𝐷) · 0) = 0)
109oveq2d 7421 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 + ((√‘𝐷) · 0)) = (1 + 0))
11 1p0e1 12364 . . . 4 (1 + 0) = 1
1210, 11eqtr2di 2787 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 = (1 + ((√‘𝐷) · 0)))
13 sq1 14213 . . . . . 6 (1↑2) = 1
1413a1i 11 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1↑2) = 1)
15 sq0 14210 . . . . . . 7 (0↑2) = 0
1615oveq2i 7416 . . . . . 6 (𝐷 · (0↑2)) = (𝐷 · 0)
177mul01d 11434 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · 0) = 0)
1816, 17eqtrid 2782 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · (0↑2)) = 0)
1914, 18oveq12d 7423 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = (1 − 0))
20 1m0e1 12361 . . . 4 (1 − 0) = 1
2119, 20eqtrdi 2786 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = 1)
22 oveq1 7412 . . . . . 6 (𝑎 = 1 → (𝑎 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 𝑏)))
2322eqeq2d 2746 . . . . 5 (𝑎 = 1 → (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 𝑏))))
24 oveq1 7412 . . . . . . 7 (𝑎 = 1 → (𝑎↑2) = (1↑2))
2524oveq1d 7420 . . . . . 6 (𝑎 = 1 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (𝑏↑2))))
2625eqeq1d 2737 . . . . 5 (𝑎 = 1 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (𝑏↑2))) = 1))
2723, 26anbi12d 632 . . . 4 (𝑎 = 1 → ((1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1)))
28 oveq2 7413 . . . . . . 7 (𝑏 = 0 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 0))
2928oveq2d 7421 . . . . . 6 (𝑏 = 0 → (1 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 0)))
3029eqeq2d 2746 . . . . 5 (𝑏 = 0 → (1 = (1 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 0))))
31 oveq1 7412 . . . . . . . 8 (𝑏 = 0 → (𝑏↑2) = (0↑2))
3231oveq2d 7421 . . . . . . 7 (𝑏 = 0 → (𝐷 · (𝑏↑2)) = (𝐷 · (0↑2)))
3332oveq2d 7421 . . . . . 6 (𝑏 = 0 → ((1↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (0↑2))))
3433eqeq1d 2737 . . . . 5 (𝑏 = 0 → (((1↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (0↑2))) = 1))
3530, 34anbi12d 632 . . . 4 (𝑏 = 0 → ((1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)))
3627, 35rspc2ev 3614 . . 3 ((1 ∈ ℕ0 ∧ 0 ∈ ℕ0 ∧ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
373, 5, 12, 21, 36syl112anc 1376 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
38 elpell1qr 42870 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ∈ (Pell1QR‘𝐷) ↔ (1 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
391, 37, 38mpbir2and 713 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  cdif 3923  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466  cn 12240  2c2 12295  0cn0 12501  cexp 14079  csqrt 15252  NNcsquarenn 42859  Pell1QRcpell1qr 42860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-pell1qr 42865
This theorem is referenced by:  elpell1qr2  42895
  Copyright terms: Public domain W3C validator