Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qr1 Structured version   Visualization version   GIF version

Theorem pell1qr1 40693
Description: 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qr1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))

Proof of Theorem pell1qr1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10976 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 1nn0 12249 . . . 4 1 ∈ ℕ0
32a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℕ0)
4 0nn0 12248 . . . 4 0 ∈ ℕ0
54a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℕ0)
6 eldifi 4061 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
76nncnd 11989 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
87sqrtcld 15149 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℂ)
98mul01d 11174 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘𝐷) · 0) = 0)
109oveq2d 7291 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 + ((√‘𝐷) · 0)) = (1 + 0))
11 1p0e1 12097 . . . 4 (1 + 0) = 1
1210, 11eqtr2di 2795 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 = (1 + ((√‘𝐷) · 0)))
13 sq1 13912 . . . . . 6 (1↑2) = 1
1413a1i 11 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1↑2) = 1)
15 sq0 13909 . . . . . . 7 (0↑2) = 0
1615oveq2i 7286 . . . . . 6 (𝐷 · (0↑2)) = (𝐷 · 0)
177mul01d 11174 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · 0) = 0)
1816, 17eqtrid 2790 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · (0↑2)) = 0)
1914, 18oveq12d 7293 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = (1 − 0))
20 1m0e1 12094 . . . 4 (1 − 0) = 1
2119, 20eqtrdi 2794 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = 1)
22 oveq1 7282 . . . . . 6 (𝑎 = 1 → (𝑎 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 𝑏)))
2322eqeq2d 2749 . . . . 5 (𝑎 = 1 → (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 𝑏))))
24 oveq1 7282 . . . . . . 7 (𝑎 = 1 → (𝑎↑2) = (1↑2))
2524oveq1d 7290 . . . . . 6 (𝑎 = 1 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (𝑏↑2))))
2625eqeq1d 2740 . . . . 5 (𝑎 = 1 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (𝑏↑2))) = 1))
2723, 26anbi12d 631 . . . 4 (𝑎 = 1 → ((1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1)))
28 oveq2 7283 . . . . . . 7 (𝑏 = 0 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 0))
2928oveq2d 7291 . . . . . 6 (𝑏 = 0 → (1 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 0)))
3029eqeq2d 2749 . . . . 5 (𝑏 = 0 → (1 = (1 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 0))))
31 oveq1 7282 . . . . . . . 8 (𝑏 = 0 → (𝑏↑2) = (0↑2))
3231oveq2d 7291 . . . . . . 7 (𝑏 = 0 → (𝐷 · (𝑏↑2)) = (𝐷 · (0↑2)))
3332oveq2d 7291 . . . . . 6 (𝑏 = 0 → ((1↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (0↑2))))
3433eqeq1d 2740 . . . . 5 (𝑏 = 0 → (((1↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (0↑2))) = 1))
3530, 34anbi12d 631 . . . 4 (𝑏 = 0 → ((1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)))
3627, 35rspc2ev 3572 . . 3 ((1 ∈ ℕ0 ∧ 0 ∈ ℕ0 ∧ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
373, 5, 12, 21, 36syl112anc 1373 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
38 elpell1qr 40669 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ∈ (Pell1QR‘𝐷) ↔ (1 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
391, 37, 38mpbir2and 710 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  cdif 3884  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cexp 13782  csqrt 14944  NNcsquarenn 40658  Pell1QRcpell1qr 40659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-pell1qr 40664
This theorem is referenced by:  elpell1qr2  40694
  Copyright terms: Public domain W3C validator