Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qr1 Structured version   Visualization version   GIF version

Theorem pell1qr1 42859
Description: 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qr1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))

Proof of Theorem pell1qr1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11175 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 1nn0 12458 . . . 4 1 ∈ ℕ0
32a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℕ0)
4 0nn0 12457 . . . 4 0 ∈ ℕ0
54a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℕ0)
6 eldifi 4094 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
76nncnd 12202 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
87sqrtcld 15406 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℂ)
98mul01d 11373 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘𝐷) · 0) = 0)
109oveq2d 7403 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 + ((√‘𝐷) · 0)) = (1 + 0))
11 1p0e1 12305 . . . 4 (1 + 0) = 1
1210, 11eqtr2di 2781 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 = (1 + ((√‘𝐷) · 0)))
13 sq1 14160 . . . . . 6 (1↑2) = 1
1413a1i 11 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1↑2) = 1)
15 sq0 14157 . . . . . . 7 (0↑2) = 0
1615oveq2i 7398 . . . . . 6 (𝐷 · (0↑2)) = (𝐷 · 0)
177mul01d 11373 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · 0) = 0)
1816, 17eqtrid 2776 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · (0↑2)) = 0)
1914, 18oveq12d 7405 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = (1 − 0))
20 1m0e1 12302 . . . 4 (1 − 0) = 1
2119, 20eqtrdi 2780 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = 1)
22 oveq1 7394 . . . . . 6 (𝑎 = 1 → (𝑎 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 𝑏)))
2322eqeq2d 2740 . . . . 5 (𝑎 = 1 → (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 𝑏))))
24 oveq1 7394 . . . . . . 7 (𝑎 = 1 → (𝑎↑2) = (1↑2))
2524oveq1d 7402 . . . . . 6 (𝑎 = 1 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (𝑏↑2))))
2625eqeq1d 2731 . . . . 5 (𝑎 = 1 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (𝑏↑2))) = 1))
2723, 26anbi12d 632 . . . 4 (𝑎 = 1 → ((1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1)))
28 oveq2 7395 . . . . . . 7 (𝑏 = 0 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 0))
2928oveq2d 7403 . . . . . 6 (𝑏 = 0 → (1 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 0)))
3029eqeq2d 2740 . . . . 5 (𝑏 = 0 → (1 = (1 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 0))))
31 oveq1 7394 . . . . . . . 8 (𝑏 = 0 → (𝑏↑2) = (0↑2))
3231oveq2d 7403 . . . . . . 7 (𝑏 = 0 → (𝐷 · (𝑏↑2)) = (𝐷 · (0↑2)))
3332oveq2d 7403 . . . . . 6 (𝑏 = 0 → ((1↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (0↑2))))
3433eqeq1d 2731 . . . . 5 (𝑏 = 0 → (((1↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (0↑2))) = 1))
3530, 34anbi12d 632 . . . 4 (𝑏 = 0 → ((1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)))
3627, 35rspc2ev 3601 . . 3 ((1 ∈ ℕ0 ∧ 0 ∈ ℕ0 ∧ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
373, 5, 12, 21, 36syl112anc 1376 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
38 elpell1qr 42835 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ∈ (Pell1QR‘𝐷) ↔ (1 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
391, 37, 38mpbir2and 713 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3911  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cexp 14026  csqrt 15199  NNcsquarenn 42824  Pell1QRcpell1qr 42825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-pell1qr 42830
This theorem is referenced by:  elpell1qr2  42860
  Copyright terms: Public domain W3C validator