Step | Hyp | Ref
| Expression |
1 | | 1red 10834 |
. 2
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 1 ∈ ℝ) |
2 | | 1nn0 12106 |
. . . 4
⊢ 1 ∈
ℕ0 |
3 | 2 | a1i 11 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 1 ∈
ℕ0) |
4 | | 0nn0 12105 |
. . . 4
⊢ 0 ∈
ℕ0 |
5 | 4 | a1i 11 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 0 ∈
ℕ0) |
6 | | eldifi 4041 |
. . . . . . . 8
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 𝐷 ∈ ℕ) |
7 | 6 | nncnd 11846 |
. . . . . . 7
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 𝐷 ∈ ℂ) |
8 | 7 | sqrtcld 15001 |
. . . . . 6
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (√‘𝐷) ∈ ℂ) |
9 | 8 | mul01d 11031 |
. . . . 5
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((√‘𝐷) · 0) = 0) |
10 | 9 | oveq2d 7229 |
. . . 4
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (1 + ((√‘𝐷) · 0)) = (1 + 0)) |
11 | | 1p0e1 11954 |
. . . 4
⊢ (1 + 0) =
1 |
12 | 10, 11 | eqtr2di 2795 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 1 = (1 + ((√‘𝐷) · 0))) |
13 | | sq1 13764 |
. . . . . 6
⊢
(1↑2) = 1 |
14 | 13 | a1i 11 |
. . . . 5
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (1↑2) = 1) |
15 | | sq0 13761 |
. . . . . . 7
⊢
(0↑2) = 0 |
16 | 15 | oveq2i 7224 |
. . . . . 6
⊢ (𝐷 · (0↑2)) = (𝐷 · 0) |
17 | 7 | mul01d 11031 |
. . . . . 6
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (𝐷 · 0) = 0) |
18 | 16, 17 | syl5eq 2790 |
. . . . 5
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (𝐷 · (0↑2)) = 0) |
19 | 14, 18 | oveq12d 7231 |
. . . 4
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((1↑2) − (𝐷 · (0↑2))) = (1 −
0)) |
20 | | 1m0e1 11951 |
. . . 4
⊢ (1
− 0) = 1 |
21 | 19, 20 | eqtrdi 2794 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((1↑2) − (𝐷 · (0↑2))) = 1) |
22 | | oveq1 7220 |
. . . . . 6
⊢ (𝑎 = 1 → (𝑎 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 𝑏))) |
23 | 22 | eqeq2d 2748 |
. . . . 5
⊢ (𝑎 = 1 → (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 𝑏)))) |
24 | | oveq1 7220 |
. . . . . . 7
⊢ (𝑎 = 1 → (𝑎↑2) = (1↑2)) |
25 | 24 | oveq1d 7228 |
. . . . . 6
⊢ (𝑎 = 1 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (𝑏↑2)))) |
26 | 25 | eqeq1d 2739 |
. . . . 5
⊢ (𝑎 = 1 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) −
(𝐷 · (𝑏↑2))) =
1)) |
27 | 23, 26 | anbi12d 634 |
. . . 4
⊢ (𝑎 = 1 → ((1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 +
((√‘𝐷) ·
𝑏)) ∧ ((1↑2)
− (𝐷 · (𝑏↑2))) =
1))) |
28 | | oveq2 7221 |
. . . . . . 7
⊢ (𝑏 = 0 →
((√‘𝐷) ·
𝑏) = ((√‘𝐷) · 0)) |
29 | 28 | oveq2d 7229 |
. . . . . 6
⊢ (𝑏 = 0 → (1 +
((√‘𝐷) ·
𝑏)) = (1 +
((√‘𝐷) ·
0))) |
30 | 29 | eqeq2d 2748 |
. . . . 5
⊢ (𝑏 = 0 → (1 = (1 +
((√‘𝐷) ·
𝑏)) ↔ 1 = (1 +
((√‘𝐷) ·
0)))) |
31 | | oveq1 7220 |
. . . . . . . 8
⊢ (𝑏 = 0 → (𝑏↑2) = (0↑2)) |
32 | 31 | oveq2d 7229 |
. . . . . . 7
⊢ (𝑏 = 0 → (𝐷 · (𝑏↑2)) = (𝐷 · (0↑2))) |
33 | 32 | oveq2d 7229 |
. . . . . 6
⊢ (𝑏 = 0 → ((1↑2) −
(𝐷 · (𝑏↑2))) = ((1↑2) −
(𝐷 ·
(0↑2)))) |
34 | 33 | eqeq1d 2739 |
. . . . 5
⊢ (𝑏 = 0 → (((1↑2) −
(𝐷 · (𝑏↑2))) = 1 ↔
((1↑2) − (𝐷
· (0↑2))) = 1)) |
35 | 30, 34 | anbi12d 634 |
. . . 4
⊢ (𝑏 = 0 → ((1 = (1 +
((√‘𝐷) ·
𝑏)) ∧ ((1↑2)
− (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 +
((√‘𝐷) ·
0)) ∧ ((1↑2) − (𝐷 · (0↑2))) =
1))) |
36 | 27, 35 | rspc2ev 3549 |
. . 3
⊢ ((1
∈ ℕ0 ∧ 0 ∈ ℕ0 ∧ (1 = (1 +
((√‘𝐷) ·
0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)) →
∃𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) |
37 | 3, 5, 12, 21, 36 | syl112anc 1376 |
. 2
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ∃𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (1 =
(𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) |
38 | | elpell1qr 40372 |
. 2
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (1 ∈ (Pell1QR‘𝐷) ↔ (1 ∈ ℝ ∧
∃𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
39 | 1, 37, 38 | mpbir2and 713 |
1
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 1 ∈ (Pell1QR‘𝐷)) |