Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qr1 Structured version   Visualization version   GIF version

Theorem pell1qr1 41180
Description: 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qr1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))

Proof of Theorem pell1qr1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11156 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 1nn0 12429 . . . 4 1 ∈ ℕ0
32a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℕ0)
4 0nn0 12428 . . . 4 0 ∈ ℕ0
54a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℕ0)
6 eldifi 4086 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
76nncnd 12169 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
87sqrtcld 15322 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℂ)
98mul01d 11354 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘𝐷) · 0) = 0)
109oveq2d 7373 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 + ((√‘𝐷) · 0)) = (1 + 0))
11 1p0e1 12277 . . . 4 (1 + 0) = 1
1210, 11eqtr2di 2793 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 = (1 + ((√‘𝐷) · 0)))
13 sq1 14099 . . . . . 6 (1↑2) = 1
1413a1i 11 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1↑2) = 1)
15 sq0 14096 . . . . . . 7 (0↑2) = 0
1615oveq2i 7368 . . . . . 6 (𝐷 · (0↑2)) = (𝐷 · 0)
177mul01d 11354 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · 0) = 0)
1816, 17eqtrid 2788 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 · (0↑2)) = 0)
1914, 18oveq12d 7375 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = (1 − 0))
20 1m0e1 12274 . . . 4 (1 − 0) = 1
2119, 20eqtrdi 2792 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1↑2) − (𝐷 · (0↑2))) = 1)
22 oveq1 7364 . . . . . 6 (𝑎 = 1 → (𝑎 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 𝑏)))
2322eqeq2d 2747 . . . . 5 (𝑎 = 1 → (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 𝑏))))
24 oveq1 7364 . . . . . . 7 (𝑎 = 1 → (𝑎↑2) = (1↑2))
2524oveq1d 7372 . . . . . 6 (𝑎 = 1 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (𝑏↑2))))
2625eqeq1d 2738 . . . . 5 (𝑎 = 1 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (𝑏↑2))) = 1))
2723, 26anbi12d 631 . . . 4 (𝑎 = 1 → ((1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1)))
28 oveq2 7365 . . . . . . 7 (𝑏 = 0 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 0))
2928oveq2d 7373 . . . . . 6 (𝑏 = 0 → (1 + ((√‘𝐷) · 𝑏)) = (1 + ((√‘𝐷) · 0)))
3029eqeq2d 2747 . . . . 5 (𝑏 = 0 → (1 = (1 + ((√‘𝐷) · 𝑏)) ↔ 1 = (1 + ((√‘𝐷) · 0))))
31 oveq1 7364 . . . . . . . 8 (𝑏 = 0 → (𝑏↑2) = (0↑2))
3231oveq2d 7373 . . . . . . 7 (𝑏 = 0 → (𝐷 · (𝑏↑2)) = (𝐷 · (0↑2)))
3332oveq2d 7373 . . . . . 6 (𝑏 = 0 → ((1↑2) − (𝐷 · (𝑏↑2))) = ((1↑2) − (𝐷 · (0↑2))))
3433eqeq1d 2738 . . . . 5 (𝑏 = 0 → (((1↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((1↑2) − (𝐷 · (0↑2))) = 1))
3530, 34anbi12d 631 . . . 4 (𝑏 = 0 → ((1 = (1 + ((√‘𝐷) · 𝑏)) ∧ ((1↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)))
3627, 35rspc2ev 3592 . . 3 ((1 ∈ ℕ0 ∧ 0 ∈ ℕ0 ∧ (1 = (1 + ((√‘𝐷) · 0)) ∧ ((1↑2) − (𝐷 · (0↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
373, 5, 12, 21, 36syl112anc 1374 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
38 elpell1qr 41156 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ∈ (Pell1QR‘𝐷) ↔ (1 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (1 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
391, 37, 38mpbir2and 711 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  cdif 3907  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cexp 13967  csqrt 15118  NNcsquarenn 41145  Pell1QRcpell1qr 41146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-pell1qr 41151
This theorem is referenced by:  elpell1qr2  41181
  Copyright terms: Public domain W3C validator