Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell1qrss14 | Structured version Visualization version GIF version |
Description: First-quadrant Pell solutions are a subset of the positive solutions. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pell1qrss14 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12086 | . . . . . . . 8 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ)) |
3 | 2 | anim1d 614 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑏 ∈ ℤ ∧ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
4 | 3 | reximdv2 3181 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) → ∃𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))) |
5 | 4 | reximdv 3183 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) → ∃𝑐 ∈ ℕ0 ∃𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))) |
6 | 5 | anim2d 615 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0 ∃𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
7 | elpell1qr 40241 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))) | |
8 | elpell14qr 40243 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0 ∃𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))) | |
9 | 6, 7, 8 | 3imtr4d 297 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1QR‘𝐷) → 𝑎 ∈ (Pell14QR‘𝐷))) |
10 | 9 | ssrdv 3883 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∃wrex 3054 ∖ cdif 3840 ⊆ wss 3843 ‘cfv 6339 (class class class)co 7170 ℝcr 10614 1c1 10616 + caddc 10618 · cmul 10620 − cmin 10948 ℕcn 11716 2c2 11771 ℕ0cn0 11976 ℤcz 12062 ↑cexp 13521 √csqrt 14682 ◻NNcsquarenn 40230 Pell1QRcpell1qr 40231 Pell14QRcpell14qr 40233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-i2m1 10683 ax-1ne0 10684 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-neg 10951 df-nn 11717 df-n0 11977 df-z 12063 df-pell1qr 40236 df-pell14qr 40237 |
This theorem is referenced by: elpell1qr2 40266 pellfundre 40275 pellfundge 40276 pellfundglb 40279 pellfundex 40280 pellfund14 40292 pellfund14b 40293 rmspecfund 40303 |
Copyright terms: Public domain | W3C validator |