Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrss14 Structured version   Visualization version   GIF version

Theorem pell1qrss14 42841
Description: First-quadrant Pell solutions are a subset of the positive solutions. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrss14 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))

Proof of Theorem pell1qrss14
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12514 . . . . . . . 8 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
21a1i 11 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0𝑏 ∈ ℤ))
32anim1d 611 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑏 ∈ ℤ ∧ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
43reximdv2 3139 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) → ∃𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))
54reximdv 3144 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))
65anim2d 612 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
7 elpell1qr 42820 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
8 elpell14qr 42822 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
96, 7, 83imtr4d 294 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1QR‘𝐷) → 𝑎 ∈ (Pell14QR‘𝐷)))
109ssrdv 3943 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3902  wss 3905  cfv 6486  (class class class)co 7353  cr 11027  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  cn 12146  2c2 12201  0cn0 12402  cz 12489  cexp 13986  csqrt 15158  NNcsquarenn 42809  Pell1QRcpell1qr 42810  Pell14QRcpell14qr 42812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-i2m1 11096  ax-1ne0 11097  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-pell1qr 42815  df-pell14qr 42816
This theorem is referenced by:  elpell1qr2  42845  pellfundre  42854  pellfundge  42855  pellfundglb  42858  pellfundex  42859  pellfund14  42871  pellfund14b  42872  rmspecfund  42882
  Copyright terms: Public domain W3C validator