Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrss14 Structured version   Visualization version   GIF version

Theorem pell1qrss14 42988
Description: First-quadrant Pell solutions are a subset of the positive solutions. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrss14 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))

Proof of Theorem pell1qrss14
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12501 . . . . . . . 8 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
21a1i 11 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0𝑏 ∈ ℤ))
32anim1d 611 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑏 ∈ ℤ ∧ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
43reximdv2 3143 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) → ∃𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))
54reximdv 3148 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))
65anim2d 612 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
7 elpell1qr 42967 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
8 elpell14qr 42969 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
96, 7, 83imtr4d 294 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1QR‘𝐷) → 𝑎 ∈ (Pell14QR‘𝐷)))
109ssrdv 3936 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  cdif 3895  wss 3898  cfv 6488  (class class class)co 7354  cr 11014  1c1 11016   + caddc 11018   · cmul 11020  cmin 11353  cn 12134  2c2 12189  0cn0 12390  cz 12477  cexp 13972  csqrt 15144  NNcsquarenn 42956  Pell1QRcpell1qr 42957  Pell14QRcpell14qr 42959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-i2m1 11083  ax-1ne0 11084  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-pell1qr 42962  df-pell14qr 42963
This theorem is referenced by:  elpell1qr2  42992  pellfundre  43001  pellfundge  43002  pellfundglb  43005  pellfundex  43006  pellfund14  43018  pellfund14b  43019  rmspecfund  43029
  Copyright terms: Public domain W3C validator