Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrss14 Structured version   Visualization version   GIF version

Theorem pell1qrss14 39472
Description: First-quadrant Pell solutions are a subset of the positive solutions. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrss14 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))

Proof of Theorem pell1qrss14
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12008 . . . . . . . 8 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
21a1i 11 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ ℕ0𝑏 ∈ ℤ))
32anim1d 612 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ ℕ0 ∧ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑏 ∈ ℤ ∧ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
43reximdv2 3273 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) → ∃𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))
54reximdv 3275 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)))
65anim2d 613 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
7 elpell1qr 39451 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
8 elpell14qr 39453 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) ↔ (𝑎 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝑎 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
96, 7, 83imtr4d 296 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell1QR‘𝐷) → 𝑎 ∈ (Pell14QR‘𝐷)))
109ssrdv 3975 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141  cdif 3935  wss 3938  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  cn 11640  2c2 11695  0cn0 11900  cz 11984  cexp 13432  csqrt 14594  NNcsquarenn 39440  Pell1QRcpell1qr 39441  Pell14QRcpell14qr 39443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-i2m1 10607  ax-1ne0 10608  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-pell1qr 39446  df-pell14qr 39447
This theorem is referenced by:  elpell1qr2  39476  pellfundre  39485  pellfundge  39486  pellfundglb  39489  pellfundex  39490  pellfund14  39502  pellfund14b  39503  rmspecfund  39513
  Copyright terms: Public domain W3C validator