![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltop | Structured version Visualization version GIF version |
Description: Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.) |
Ref | Expression |
---|---|
eltop | ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ 𝐴 ⊆ ∪ (𝐽 ∩ 𝒫 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 22870 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
2 | 1 | eleq2d 2815 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴 ∈ 𝐽)) |
3 | eltg 22854 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴 ⊆ ∪ (𝐽 ∩ 𝒫 𝐴))) | |
4 | 2, 3 | bitr3d 281 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ 𝐴 ⊆ ∪ (𝐽 ∩ 𝒫 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 ∩ cin 3944 ⊆ wss 3945 𝒫 cpw 4599 ∪ cuni 4904 ‘cfv 6543 topGenctg 17413 Topctop 22789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-topgen 17419 df-top 22790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |