MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltop Structured version   Visualization version   GIF version

Theorem eltop 22877
Description: Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop (𝐽 ∈ Top → (𝐴𝐽𝐴 (𝐽 ∩ 𝒫 𝐴)))

Proof of Theorem eltop
StepHypRef Expression
1 tgtop 22876 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
21eleq2d 2814 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴𝐽))
3 eltg 22860 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴 (𝐽 ∩ 𝒫 𝐴)))
42, 3bitr3d 281 1 (𝐽 ∈ Top → (𝐴𝐽𝐴 (𝐽 ∩ 𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  cin 3904  wss 3905  𝒫 cpw 4553   cuni 4861  cfv 6486  topGenctg 17359  Topctop 22796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-topgen 17365  df-top 22797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator