MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltop2 Structured version   Visualization version   GIF version

Theorem eltop2 22888
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop2 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦

Proof of Theorem eltop2
StepHypRef Expression
1 tgtop 22886 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
21eleq2d 2817 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴𝐽))
3 eltg2b 22872 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
42, 3bitr3d 281 1 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wrex 3056  wss 3902  cfv 6481  topGenctg 17338  Topctop 22806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-topgen 17344  df-top 22807
This theorem is referenced by:  isclo  23000  cncnp  23193  ist1-2  23260  hauscmp  23320  llycmpkgen2  23463  ptpjopn  23525  txkgen  23565  xkococn  23573  xkoinjcn  23600  fclscf  23938  subgntr  24020  opnsubg  24021  qustgpopn  24033  prdsxmslem2  24442  zdis  24730  efopn  26592  cvmopnlem  35310  neibastop3  36395  ioorrnopn  46342  ioorrnopnxr  46344
  Copyright terms: Public domain W3C validator