MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltop2 Structured version   Visualization version   GIF version

Theorem eltop2 23003
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop2 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦

Proof of Theorem eltop2
StepHypRef Expression
1 tgtop 23001 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
21eleq2d 2830 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴𝐽))
3 eltg2b 22987 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
42, 3bitr3d 281 1 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976  cfv 6573  topGenctg 17497  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topgen 17503  df-top 22921
This theorem is referenced by:  isclo  23116  cncnp  23309  ist1-2  23376  hauscmp  23436  llycmpkgen2  23579  ptpjopn  23641  txkgen  23681  xkococn  23689  xkoinjcn  23716  fclscf  24054  subgntr  24136  opnsubg  24137  qustgpopn  24149  prdsxmslem2  24563  zdis  24857  efopn  26718  cvmopnlem  35246  neibastop3  36328  ioorrnopn  46226  ioorrnopnxr  46228
  Copyright terms: Public domain W3C validator