Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eltop2 | Structured version Visualization version GIF version |
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
Ref | Expression |
---|---|
eltop2 | ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 22123 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴 ∈ 𝐽)) |
3 | eltg2b 22109 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | |
4 | 2, 3 | bitr3d 280 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6433 topGenctg 17148 Topctop 22042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topgen 17154 df-top 22043 |
This theorem is referenced by: isclo 22238 cncnp 22431 ist1-2 22498 hauscmp 22558 llycmpkgen2 22701 ptpjopn 22763 txkgen 22803 xkococn 22811 xkoinjcn 22838 fclscf 23176 subgntr 23258 opnsubg 23259 qustgpopn 23271 prdsxmslem2 23685 zdis 23979 efopn 25813 cvmopnlem 33240 neibastop3 34551 ioorrnopn 43846 ioorrnopnxr 43848 |
Copyright terms: Public domain | W3C validator |