| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltop2 | Structured version Visualization version GIF version | ||
| Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
| Ref | Expression |
|---|---|
| eltop2 | ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgtop 22876 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴 ∈ 𝐽)) |
| 3 | eltg2b 22862 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | |
| 4 | 2, 3 | bitr3d 281 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ‘cfv 6486 topGenctg 17359 Topctop 22796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17365 df-top 22797 |
| This theorem is referenced by: isclo 22990 cncnp 23183 ist1-2 23250 hauscmp 23310 llycmpkgen2 23453 ptpjopn 23515 txkgen 23555 xkococn 23563 xkoinjcn 23590 fclscf 23928 subgntr 24010 opnsubg 24011 qustgpopn 24023 prdsxmslem2 24433 zdis 24721 efopn 26583 cvmopnlem 35250 neibastop3 36335 ioorrnopn 46287 ioorrnopnxr 46289 |
| Copyright terms: Public domain | W3C validator |