MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltop2 Structured version   Visualization version   GIF version

Theorem eltop2 21000
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop2 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦

Proof of Theorem eltop2
StepHypRef Expression
1 tgtop 20998 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
21eleq2d 2836 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴𝐽))
3 eltg2b 20984 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
42, 3bitr3d 270 1 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wcel 2145  wral 3061  wrex 3062  wss 3723  cfv 6030  topGenctg 16306  Topctop 20918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-iota 5993  df-fun 6032  df-fv 6038  df-topgen 16312  df-top 20919
This theorem is referenced by:  isclo  21112  cncnp  21305  ist1-2  21372  hauscmp  21431  llycmpkgen2  21574  ptpjopn  21636  txkgen  21676  xkococn  21684  xkoinjcn  21711  fclscf  22049  subgntr  22130  opnsubg  22131  qustgpopn  22143  prdsxmslem2  22554  zdis  22839  efopn  24625  cvmopnlem  31598  neibastop3  32694  ioorrnopn  41037  ioorrnopnxr  41039
  Copyright terms: Public domain W3C validator