MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirn2OLD Structured version   Visualization version   GIF version

Theorem elunirn2OLD 7256
Description: Obsolete version of elfvunirn 6919 as of 12-Jan-2025. (Contributed by Thierry Arnoux, 13-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elunirn2OLD ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → 𝐵 ran 𝐹)

Proof of Theorem elunirn2OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6924 . . . 4 (𝐵 ∈ (𝐹𝐴) → 𝐴 ∈ dom 𝐹)
2 fveq2 6887 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
32eleq2d 2819 . . . . 5 (𝑥 = 𝐴 → (𝐵 ∈ (𝐹𝑥) ↔ 𝐵 ∈ (𝐹𝐴)))
43rspcev 3606 . . . 4 ((𝐴 ∈ dom 𝐹𝐵 ∈ (𝐹𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
51, 4mpancom 688 . . 3 (𝐵 ∈ (𝐹𝐴) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
65adantl 481 . 2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
7 elunirn 7254 . . 3 (Fun 𝐹 → (𝐵 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥)))
87adantr 480 . 2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → (𝐵 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥)))
96, 8mpbird 257 1 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → 𝐵 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059   cuni 4889  dom cdm 5667  ran crn 5668  Fun wfun 6536  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6495  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator