MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirn2OLD Structured version   Visualization version   GIF version

Theorem elunirn2OLD 7258
Description: Obsolete version of elfvunirn 6923 as of 12-Jan-2025. (Contributed by Thierry Arnoux, 13-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elunirn2OLD ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → 𝐵 ran 𝐹)

Proof of Theorem elunirn2OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6928 . . . 4 (𝐵 ∈ (𝐹𝐴) → 𝐴 ∈ dom 𝐹)
2 fveq2 6891 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
32eleq2d 2811 . . . . 5 (𝑥 = 𝐴 → (𝐵 ∈ (𝐹𝑥) ↔ 𝐵 ∈ (𝐹𝐴)))
43rspcev 3602 . . . 4 ((𝐴 ∈ dom 𝐹𝐵 ∈ (𝐹𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
51, 4mpancom 686 . . 3 (𝐵 ∈ (𝐹𝐴) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
65adantl 480 . 2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
7 elunirn 7256 . . 3 (Fun 𝐹 → (𝐵 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥)))
87adantr 479 . 2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → (𝐵 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥)))
96, 8mpbird 256 1 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → 𝐵 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3060   cuni 4903  dom cdm 5672  ran crn 5673  Fun wfun 6536  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator