![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunirn2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of elfvunirn 6875 as of 12-Jan-2025. (Contributed by Thierry Arnoux, 13-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
elunirn2OLD | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → 𝐵 ∈ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6880 | . . . 4 ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐴 ∈ dom 𝐹) | |
2 | fveq2 6843 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
3 | 2 | eleq2d 2820 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ (𝐹‘𝑥) ↔ 𝐵 ∈ (𝐹‘𝐴))) |
4 | 3 | rspcev 3580 | . . . 4 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥)) |
5 | 1, 4 | mpancom 687 | . . 3 ⊢ (𝐵 ∈ (𝐹‘𝐴) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥)) |
6 | 5 | adantl 483 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥)) |
7 | elunirn 7199 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥))) | |
8 | 7 | adantr 482 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥))) |
9 | 6, 8 | mpbird 257 | 1 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → 𝐵 ∈ ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ∪ cuni 4866 dom cdm 5634 ran crn 5635 Fun wfun 6491 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-fv 6505 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |