| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunirnALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of elunirn 7191. It is shorter but requires ax-pow 5305 (through eluniima 7190, funiunfv 7188, ndmfv 6860). (Contributed by NM, 24-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elunirnALT | ⊢ (Fun 𝐹 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6024 | . . . 4 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 2 | 1 | unieqi 4870 | . . 3 ⊢ ∪ (𝐹 “ dom 𝐹) = ∪ ran 𝐹 |
| 3 | 2 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ ∪ (𝐹 “ dom 𝐹) ↔ 𝐴 ∈ ∪ ran 𝐹) |
| 4 | eluniima 7190 | . 2 ⊢ (Fun 𝐹 → (𝐴 ∈ ∪ (𝐹 “ dom 𝐹) ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) | |
| 5 | 3, 4 | bitr3id 285 | 1 ⊢ (Fun 𝐹 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∃wrex 3056 ∪ cuni 4858 dom cdm 5619 ran crn 5620 “ cima 5622 Fun wfun 6481 ‘cfv 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-fv 6495 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |