MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirnALT Structured version   Visualization version   GIF version

Theorem elunirnALT 7251
Description: Alternate proof of elunirn 7250. It is shorter but requires ax-pow 5364 (through eluniima 7249, funiunfv 7247, ndmfv 6927). (Contributed by NM, 24-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elunirnALT (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem elunirnALT
StepHypRef Expression
1 imadmrn 6070 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
21unieqi 4922 . . 3 (𝐹 “ dom 𝐹) = ran 𝐹
32eleq2i 2826 . 2 (𝐴 (𝐹 “ dom 𝐹) ↔ 𝐴 ran 𝐹)
4 eluniima 7249 . 2 (Fun 𝐹 → (𝐴 (𝐹 “ dom 𝐹) ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
53, 4bitr3id 285 1 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107  wrex 3071   cuni 4909  dom cdm 5677  ran crn 5678  cima 5680  Fun wfun 6538  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator