MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunirn Structured version   Visualization version   GIF version

Theorem fnunirn 7274
Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnunirn (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝐹

Proof of Theorem fnunirn
StepHypRef Expression
1 fnfun 6669 . . 3 (𝐹 Fn 𝐼 → Fun 𝐹)
2 elunirn 7271 . . 3 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
31, 2syl 17 . 2 (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
4 fndm 6672 . . 3 (𝐹 Fn 𝐼 → dom 𝐹 = 𝐼)
54rexeqdv 3325 . 2 (𝐹 Fn 𝐼 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥) ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
63, 5bitrd 279 1 (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  wrex 3068   cuni 4912  dom cdm 5689  ran crn 5690  Fun wfun 6557   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  itunitc  10459  wunex2  10776  mreunirn  17646  arwhoma  18099  filunirn  23906  xmetunirn  24363  abfmpunirn  32669  cmpcref  33811  neibastop2lem  36343  stoweidlem59  46015
  Copyright terms: Public domain W3C validator