| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnunirn | Structured version Visualization version GIF version | ||
| Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| fnunirn | ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6621 | . . 3 ⊢ (𝐹 Fn 𝐼 → Fun 𝐹) | |
| 2 | elunirn 7228 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) |
| 4 | fndm 6624 | . . 3 ⊢ (𝐹 Fn 𝐼 → dom 𝐹 = 𝐼) | |
| 5 | 4 | rexeqdv 3302 | . 2 ⊢ (𝐹 Fn 𝐼 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃wrex 3054 ∪ cuni 4874 dom cdm 5641 ran crn 5642 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: itunitc 10381 wunex2 10698 mreunirn 17569 arwhoma 18014 filunirn 23776 xmetunirn 24232 abfmpunirn 32583 cmpcref 33847 neibastop2lem 36355 stoweidlem59 46064 |
| Copyright terms: Public domain | W3C validator |