MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunirn Structured version   Visualization version   GIF version

Theorem fnunirn 7275
Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnunirn (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝐹

Proof of Theorem fnunirn
StepHypRef Expression
1 fnfun 6667 . . 3 (𝐹 Fn 𝐼 → Fun 𝐹)
2 elunirn 7272 . . 3 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
31, 2syl 17 . 2 (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
4 fndm 6670 . . 3 (𝐹 Fn 𝐼 → dom 𝐹 = 𝐼)
54rexeqdv 3326 . 2 (𝐹 Fn 𝐼 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥) ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
63, 5bitrd 279 1 (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107  wrex 3069   cuni 4906  dom cdm 5684  ran crn 5685  Fun wfun 6554   Fn wfn 6555  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568
This theorem is referenced by:  itunitc  10462  wunex2  10779  mreunirn  17645  arwhoma  18091  filunirn  23891  xmetunirn  24348  abfmpunirn  32663  cmpcref  33850  neibastop2lem  36362  stoweidlem59  46079
  Copyright terms: Public domain W3C validator