Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnunirn | Structured version Visualization version GIF version |
Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
fnunirn | ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6517 | . . 3 ⊢ (𝐹 Fn 𝐼 → Fun 𝐹) | |
2 | elunirn 7106 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) |
4 | fndm 6520 | . . 3 ⊢ (𝐹 Fn 𝐼 → dom 𝐹 = 𝐼) | |
5 | 4 | rexeqdv 3340 | . 2 ⊢ (𝐹 Fn 𝐼 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
6 | 3, 5 | bitrd 278 | 1 ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∃wrex 3064 ∪ cuni 4836 dom cdm 5580 ran crn 5581 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: itunitc 10108 wunex2 10425 mreunirn 17227 arwhoma 17676 filunirn 22941 xmetunirn 23398 abfmpunirn 30891 cmpcref 31702 neibastop2lem 34476 stoweidlem59 43490 |
Copyright terms: Public domain | W3C validator |