MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirn Structured version   Visualization version   GIF version

Theorem elunirn 7271
Description: Membership in the union of the range of a function. See elunirnALT 7272 for a shorter proof which uses ax-pow 5365. See elfvunirn 6938 for a more general version of the reverse direction. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem elunirn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4910 . 2 (𝐴 ran 𝐹 ↔ ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2 funfn 6596 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
3 fvelrnb 6969 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
42, 3sylbi 217 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
54anbi2d 630 . . . . . 6 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦)))
6 r19.42v 3191 . . . . . 6 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
75, 6bitr4di 289 . . . . 5 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦)))
8 eleq2 2830 . . . . . . 7 ((𝐹𝑥) = 𝑦 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴𝑦))
98biimparc 479 . . . . . 6 ((𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → 𝐴 ∈ (𝐹𝑥))
109reximi 3084 . . . . 5 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥))
117, 10biimtrdi 253 . . . 4 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
1211exlimdv 1933 . . 3 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
13 fvelrn 7096 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
1413a1d 25 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → (𝐹𝑥) ∈ ran 𝐹))
1514ancld 550 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
16 fvex 6919 . . . . . 6 (𝐹𝑥) ∈ V
17 eleq2 2830 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝐴𝑦𝐴 ∈ (𝐹𝑥)))
18 eleq1 2829 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
1917, 18anbi12d 632 . . . . . 6 (𝑦 = (𝐹𝑥) → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
2016, 19spcev 3606 . . . . 5 ((𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2115, 20syl6 35 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2221rexlimdva 3155 . . 3 (Fun 𝐹 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2312, 22impbid 212 . 2 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
241, 23bitrid 283 1 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3070   cuni 4907  dom cdm 5685  ran crn 5686  Fun wfun 6555   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  elunirn2OLD  7273  fnunirn  7274  fin23lem30  10382  ustn0  24229  ustbas  24236  elunirnmbfm  34253  fourierdlem70  46191  fourierdlem71  46192  fourierdlem80  46201
  Copyright terms: Public domain W3C validator