MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirn Structured version   Visualization version   GIF version

Theorem elunirn 7288
Description: Membership in the union of the range of a function. See elunirnALT 7289 for a shorter proof which uses ax-pow 5383. See elfvunirn 6952 for a more general version of the reverse direction. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem elunirn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4934 . 2 (𝐴 ran 𝐹 ↔ ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2 funfn 6608 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
3 fvelrnb 6982 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
42, 3sylbi 217 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
54anbi2d 629 . . . . . 6 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦)))
6 r19.42v 3197 . . . . . 6 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
75, 6bitr4di 289 . . . . 5 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦)))
8 eleq2 2833 . . . . . . 7 ((𝐹𝑥) = 𝑦 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴𝑦))
98biimparc 479 . . . . . 6 ((𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → 𝐴 ∈ (𝐹𝑥))
109reximi 3090 . . . . 5 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥))
117, 10biimtrdi 253 . . . 4 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
1211exlimdv 1932 . . 3 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
13 fvelrn 7110 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
1413a1d 25 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → (𝐹𝑥) ∈ ran 𝐹))
1514ancld 550 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
16 fvex 6933 . . . . . 6 (𝐹𝑥) ∈ V
17 eleq2 2833 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝐴𝑦𝐴 ∈ (𝐹𝑥)))
18 eleq1 2832 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
1917, 18anbi12d 631 . . . . . 6 (𝑦 = (𝐹𝑥) → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
2016, 19spcev 3619 . . . . 5 ((𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2115, 20syl6 35 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2221rexlimdva 3161 . . 3 (Fun 𝐹 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2312, 22impbid 212 . 2 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
241, 23bitrid 283 1 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076   cuni 4931  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  elunirn2OLD  7290  fnunirn  7291  fin23lem30  10411  ustn0  24250  ustbas  24257  elunirnmbfm  34216  fourierdlem70  46097  fourierdlem71  46098  fourierdlem80  46107
  Copyright terms: Public domain W3C validator