MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirn Structured version   Visualization version   GIF version

Theorem elunirn 7199
Description: Membership in the union of the range of a function. See elunirnALT 7200 for a shorter proof which uses ax-pow 5321. See elfvunirn 6875 for a more general version of the reverse direction. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem elunirn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4869 . 2 (𝐴 ran 𝐹 ↔ ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2 funfn 6532 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
3 fvelrnb 6904 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
42, 3sylbi 216 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
54anbi2d 630 . . . . . 6 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦)))
6 r19.42v 3184 . . . . . 6 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
75, 6bitr4di 289 . . . . 5 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦)))
8 eleq2 2823 . . . . . . 7 ((𝐹𝑥) = 𝑦 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴𝑦))
98biimparc 481 . . . . . 6 ((𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → 𝐴 ∈ (𝐹𝑥))
109reximi 3084 . . . . 5 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥))
117, 10syl6bi 253 . . . 4 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
1211exlimdv 1937 . . 3 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
13 fvelrn 7028 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
1413a1d 25 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → (𝐹𝑥) ∈ ran 𝐹))
1514ancld 552 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
16 fvex 6856 . . . . . 6 (𝐹𝑥) ∈ V
17 eleq2 2823 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝐴𝑦𝐴 ∈ (𝐹𝑥)))
18 eleq1 2822 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
1917, 18anbi12d 632 . . . . . 6 (𝑦 = (𝐹𝑥) → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
2016, 19spcev 3564 . . . . 5 ((𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2115, 20syl6 35 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2221rexlimdva 3149 . . 3 (Fun 𝐹 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2312, 22impbid 211 . 2 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
241, 23bitrid 283 1 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wrex 3070   cuni 4866  dom cdm 5634  ran crn 5635  Fun wfun 6491   Fn wfn 6492  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fn 6500  df-fv 6505
This theorem is referenced by:  elunirn2OLD  7201  fnunirn  7202  fin23lem30  10283  ustn0  23588  ustbas  23595  elunirnmbfm  32908  fourierdlem70  44503  fourierdlem71  44504  fourierdlem80  44513
  Copyright terms: Public domain W3C validator