MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweonOLD Structured version   Visualization version   GIF version

Theorem epweonOLD 7626
Description: Obsolete version of epweon 7625 as of 30-Nov-2024. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
epweonOLD E We On

Proof of Theorem epweonOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6305 . 2 E Fr On
2 eloni 6276 . . . 4 (𝑥 ∈ On → Ord 𝑥)
3 eloni 6276 . . . 4 (𝑦 ∈ On → Ord 𝑦)
4 ordtri3or 6298 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
5 epel 5498 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 260 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5498 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1155 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
94, 8sylibr 233 . . . 4 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
102, 3, 9syl2an 596 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1110rgen2 3120 . 2 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
12 dfwe2 7624 . 2 ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
131, 11, 12mpbir2an 708 1 E We On
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3o 1085  wcel 2106  wral 3064   class class class wbr 5074   E cep 5494   Fr wfr 5541   We wwe 5543  Ord word 6265  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator