| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrinf0 | Structured version Visualization version GIF version | ||
| Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
| Ref | Expression |
|---|---|
| xrinf0 | ⊢ inf(∅, ℝ*, < ) = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13162 | . . . 4 ⊢ < Or ℝ* | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → < Or ℝ*) |
| 3 | pnfxr 11294 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → +∞ ∈ ℝ*) |
| 5 | noel 4318 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
| 6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑦 ∈ ∅ → ¬ 𝑦 < +∞) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞) |
| 8 | pnfnlt 13149 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
| 9 | 8 | pm2.21d 121 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
| 10 | 9 | imp 406 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
| 12 | 2, 4, 7, 11 | eqinfd 9503 | . 2 ⊢ (⊤ → inf(∅, ℝ*, < ) = +∞) |
| 13 | 12 | mptru 1547 | 1 ⊢ inf(∅, ℝ*, < ) = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∃wrex 3061 ∅c0 4313 class class class wbr 5124 Or wor 5565 infcinf 9458 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 |
| This theorem is referenced by: ramcl2lem 17034 infleinf 45366 infxrpnf 45440 supxrltinfxr 45443 supminfxr 45458 |
| Copyright terms: Public domain | W3C validator |