| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrinf0 | Structured version Visualization version GIF version | ||
| Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
| Ref | Expression |
|---|---|
| xrinf0 | ⊢ inf(∅, ℝ*, < ) = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13037 | . . . 4 ⊢ < Or ℝ* | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → < Or ℝ*) |
| 3 | pnfxr 11163 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → +∞ ∈ ℝ*) |
| 5 | noel 4288 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
| 6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑦 ∈ ∅ → ¬ 𝑦 < +∞) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞) |
| 8 | pnfnlt 13024 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
| 9 | 8 | pm2.21d 121 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
| 10 | 9 | imp 406 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
| 12 | 2, 4, 7, 11 | eqinfd 9370 | . 2 ⊢ (⊤ → inf(∅, ℝ*, < ) = +∞) |
| 13 | 12 | mptru 1548 | 1 ⊢ inf(∅, ℝ*, < ) = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ∃wrex 3056 ∅c0 4283 class class class wbr 5091 Or wor 5523 infcinf 9325 +∞cpnf 11140 ℝ*cxr 11142 < clt 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 |
| This theorem is referenced by: ramcl2lem 16918 infleinf 45409 infxrpnf 45483 supxrltinfxr 45486 supminfxr 45501 |
| Copyright terms: Public domain | W3C validator |