![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrinf0 | Structured version Visualization version GIF version |
Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
xrinf0 | ⊢ inf(∅, ℝ*, < ) = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12221 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → < Or ℝ*) |
3 | pnfxr 10382 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → +∞ ∈ ℝ*) |
5 | noel 4119 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
6 | 5 | pm2.21i 117 | . . . 4 ⊢ (𝑦 ∈ ∅ → ¬ 𝑦 < +∞) |
7 | 6 | adantl 474 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞) |
8 | pnfnlt 12209 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
9 | 8 | pm2.21d 119 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
10 | 9 | imp 396 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
11 | 10 | adantl 474 | . . 3 ⊢ ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
12 | 2, 4, 7, 11 | eqinfd 8633 | . 2 ⊢ (⊤ → inf(∅, ℝ*, < ) = +∞) |
13 | 12 | mptru 1661 | 1 ⊢ inf(∅, ℝ*, < ) = +∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 385 = wceq 1653 ⊤wtru 1654 ∈ wcel 2157 ∃wrex 3090 ∅c0 4115 class class class wbr 4843 Or wor 5232 infcinf 8589 +∞cpnf 10360 ℝ*cxr 10362 < clt 10363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 |
This theorem is referenced by: ramcl2lem 16046 infleinf 40332 infxrpnf 40417 supxrltinfxr 40420 supminfxr 40437 |
Copyright terms: Public domain | W3C validator |