| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrinf0 | Structured version Visualization version GIF version | ||
| Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
| Ref | Expression |
|---|---|
| xrinf0 | ⊢ inf(∅, ℝ*, < ) = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13108 | . . . 4 ⊢ < Or ℝ* | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → < Or ℝ*) |
| 3 | pnfxr 11235 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → +∞ ∈ ℝ*) |
| 5 | noel 4304 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
| 6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑦 ∈ ∅ → ¬ 𝑦 < +∞) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞) |
| 8 | pnfnlt 13095 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
| 9 | 8 | pm2.21d 121 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
| 10 | 9 | imp 406 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
| 12 | 2, 4, 7, 11 | eqinfd 9444 | . 2 ⊢ (⊤ → inf(∅, ℝ*, < ) = +∞) |
| 13 | 12 | mptru 1547 | 1 ⊢ inf(∅, ℝ*, < ) = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∃wrex 3054 ∅c0 4299 class class class wbr 5110 Or wor 5548 infcinf 9399 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 |
| This theorem is referenced by: ramcl2lem 16987 infleinf 45375 infxrpnf 45449 supxrltinfxr 45452 supminfxr 45467 |
| Copyright terms: Public domain | W3C validator |