Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrinf0 | Structured version Visualization version GIF version |
Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
xrinf0 | ⊢ inf(∅, ℝ*, < ) = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12804 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → < Or ℝ*) |
3 | pnfxr 10960 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → +∞ ∈ ℝ*) |
5 | noel 4261 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑦 ∈ ∅ → ¬ 𝑦 < +∞) |
7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞) |
8 | pnfnlt 12793 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
9 | 8 | pm2.21d 121 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
10 | 9 | imp 406 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
11 | 10 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
12 | 2, 4, 7, 11 | eqinfd 9174 | . 2 ⊢ (⊤ → inf(∅, ℝ*, < ) = +∞) |
13 | 12 | mptru 1546 | 1 ⊢ inf(∅, ℝ*, < ) = +∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∃wrex 3064 ∅c0 4253 class class class wbr 5070 Or wor 5493 infcinf 9130 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: ramcl2lem 16638 infleinf 42801 infxrpnf 42876 supxrltinfxr 42879 supminfxr 42894 |
Copyright terms: Public domain | W3C validator |