| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrinf0 | Structured version Visualization version GIF version | ||
| Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
| Ref | Expression |
|---|---|
| xrinf0 | ⊢ inf(∅, ℝ*, < ) = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13101 | . . . 4 ⊢ < Or ℝ* | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → < Or ℝ*) |
| 3 | pnfxr 11228 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → +∞ ∈ ℝ*) |
| 5 | noel 4301 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
| 6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑦 ∈ ∅ → ¬ 𝑦 < +∞) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞) |
| 8 | pnfnlt 13088 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
| 9 | 8 | pm2.21d 121 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
| 10 | 9 | imp 406 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
| 12 | 2, 4, 7, 11 | eqinfd 9437 | . 2 ⊢ (⊤ → inf(∅, ℝ*, < ) = +∞) |
| 13 | 12 | mptru 1547 | 1 ⊢ inf(∅, ℝ*, < ) = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∃wrex 3053 ∅c0 4296 class class class wbr 5107 Or wor 5545 infcinf 9392 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 |
| This theorem is referenced by: ramcl2lem 16980 infleinf 45368 infxrpnf 45442 supxrltinfxr 45445 supminfxr 45460 |
| Copyright terms: Public domain | W3C validator |