MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinf0 Structured version   Visualization version   GIF version

Theorem xrinf0 12719
Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
xrinf0 inf(∅, ℝ*, < ) = +∞

Proof of Theorem xrinf0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 12522 . . . 4 < Or ℝ*
21a1i 11 . . 3 (⊤ → < Or ℝ*)
3 pnfxr 10684 . . . 4 +∞ ∈ ℝ*
43a1i 11 . . 3 (⊤ → +∞ ∈ ℝ*)
5 noel 4247 . . . . 5 ¬ 𝑦 ∈ ∅
65pm2.21i 119 . . . 4 (𝑦 ∈ ∅ → ¬ 𝑦 < +∞)
76adantl 485 . . 3 ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞)
8 pnfnlt 12511 . . . . . 6 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
98pm2.21d 121 . . . . 5 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
109imp 410 . . . 4 ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
1110adantl 485 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
122, 4, 7, 11eqinfd 8933 . 2 (⊤ → inf(∅, ℝ*, < ) = +∞)
1312mptru 1545 1 inf(∅, ℝ*, < ) = +∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1538  wtru 1539  wcel 2111  wrex 3107  c0 4243   class class class wbr 5030   Or wor 5437  infcinf 8889  +∞cpnf 10661  *cxr 10663   < clt 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669
This theorem is referenced by:  ramcl2lem  16335  infleinf  42004  infxrpnf  42084  supxrltinfxr  42087  supminfxr  42103
  Copyright terms: Public domain W3C validator