MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinf0 Structured version   Visualization version   GIF version

Theorem xrinf0 13350
Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
xrinf0 inf(∅, ℝ*, < ) = +∞

Proof of Theorem xrinf0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13153 . . . 4 < Or ℝ*
21a1i 11 . . 3 (⊤ → < Or ℝ*)
3 pnfxr 11299 . . . 4 +∞ ∈ ℝ*
43a1i 11 . . 3 (⊤ → +∞ ∈ ℝ*)
5 noel 4331 . . . . 5 ¬ 𝑦 ∈ ∅
65pm2.21i 119 . . . 4 (𝑦 ∈ ∅ → ¬ 𝑦 < +∞)
76adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞)
8 pnfnlt 13141 . . . . . 6 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
98pm2.21d 121 . . . . 5 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
109imp 406 . . . 4 ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
1110adantl 481 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
122, 4, 7, 11eqinfd 9509 . 2 (⊤ → inf(∅, ℝ*, < ) = +∞)
1312mptru 1541 1 inf(∅, ℝ*, < ) = +∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1534  wtru 1535  wcel 2099  wrex 3067  c0 4323   class class class wbr 5148   Or wor 5589  infcinf 9465  +∞cpnf 11276  *cxr 11278   < clt 11279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-pre-lttri 11213  ax-pre-lttrn 11214
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284
This theorem is referenced by:  ramcl2lem  16978  infleinf  44754  infxrpnf  44828  supxrltinfxr  44831  supminfxr  44846
  Copyright terms: Public domain W3C validator