MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinf0 Structured version   Visualization version   GIF version

Theorem xrinf0 13240
Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
xrinf0 inf(∅, ℝ*, < ) = +∞

Proof of Theorem xrinf0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13042 . . . 4 < Or ℝ*
21a1i 11 . . 3 (⊤ → < Or ℝ*)
3 pnfxr 11173 . . . 4 +∞ ∈ ℝ*
43a1i 11 . . 3 (⊤ → +∞ ∈ ℝ*)
5 noel 4287 . . . . 5 ¬ 𝑦 ∈ ∅
65pm2.21i 119 . . . 4 (𝑦 ∈ ∅ → ¬ 𝑦 < +∞)
76adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞)
8 pnfnlt 13029 . . . . . 6 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
98pm2.21d 121 . . . . 5 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
109imp 406 . . . 4 ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
1110adantl 481 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
122, 4, 7, 11eqinfd 9377 . 2 (⊤ → inf(∅, ℝ*, < ) = +∞)
1312mptru 1548 1 inf(∅, ℝ*, < ) = +∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wtru 1542  wcel 2113  wrex 3057  c0 4282   class class class wbr 5093   Or wor 5526  infcinf 9332  +∞cpnf 11150  *cxr 11152   < clt 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158
This theorem is referenced by:  ramcl2lem  16923  infleinf  45494  infxrpnf  45568  supxrltinfxr  45571  supminfxr  45586
  Copyright terms: Public domain W3C validator