![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infmremnf | Structured version Visualization version GIF version |
Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infmremnf | ⊢ inf(ℝ, ℝ*, < ) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reltxrnmnf 13327 | . 2 ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) | |
2 | xrltso 13126 | . . . 4 ⊢ < Or ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → < Or ℝ*) |
4 | mnfxr 11275 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → -∞ ∈ ℝ*) |
6 | rexr 11264 | . . . . 5 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*) | |
7 | nltmnf 13115 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 < -∞) |
9 | 8 | adantl 481 | . . 3 ⊢ ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ 𝑦 ∈ ℝ) → ¬ 𝑦 < -∞) |
10 | breq2 5145 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (-∞ < 𝑥 ↔ -∞ < 𝑦)) | |
11 | breq2 5145 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 < 𝑥 ↔ 𝑧 < 𝑦)) | |
12 | 11 | rexbidv 3172 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ℝ 𝑧 < 𝑥 ↔ ∃𝑧 ∈ ℝ 𝑧 < 𝑦)) |
13 | 10, 12 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ↔ (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
14 | 13 | rspcv 3602 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
15 | 14 | com23 86 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (-∞ < 𝑦 → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
16 | 15 | imp 406 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ -∞ < 𝑦) → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦)) |
17 | 16 | impcom 407 | . . 3 ⊢ ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ (𝑦 ∈ ℝ* ∧ -∞ < 𝑦)) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦) |
18 | 3, 5, 9, 17 | eqinfd 9482 | . 2 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → inf(ℝ, ℝ*, < ) = -∞) |
19 | 1, 18 | ax-mp 5 | 1 ⊢ inf(ℝ, ℝ*, < ) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 class class class wbr 5141 Or wor 5580 infcinf 9438 ℝcr 11111 -∞cmnf 11250 ℝ*cxr 11251 < clt 11252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |