![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infmremnf | Structured version Visualization version GIF version |
Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infmremnf | ⊢ inf(ℝ, ℝ*, < ) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reltxrnmnf 13351 | . 2 ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) | |
2 | xrltso 13150 | . . . 4 ⊢ < Or ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → < Or ℝ*) |
4 | mnfxr 11299 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → -∞ ∈ ℝ*) |
6 | rexr 11288 | . . . . 5 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*) | |
7 | nltmnf 13139 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 < -∞) |
9 | 8 | adantl 480 | . . 3 ⊢ ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ 𝑦 ∈ ℝ) → ¬ 𝑦 < -∞) |
10 | breq2 5145 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (-∞ < 𝑥 ↔ -∞ < 𝑦)) | |
11 | breq2 5145 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 < 𝑥 ↔ 𝑧 < 𝑦)) | |
12 | 11 | rexbidv 3169 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ℝ 𝑧 < 𝑥 ↔ ∃𝑧 ∈ ℝ 𝑧 < 𝑦)) |
13 | 10, 12 | imbi12d 343 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ↔ (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
14 | 13 | rspcv 3597 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
15 | 14 | com23 86 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (-∞ < 𝑦 → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
16 | 15 | imp 405 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ -∞ < 𝑦) → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦)) |
17 | 16 | impcom 406 | . . 3 ⊢ ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ (𝑦 ∈ ℝ* ∧ -∞ < 𝑦)) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦) |
18 | 3, 5, 9, 17 | eqinfd 9506 | . 2 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → inf(ℝ, ℝ*, < ) = -∞) |
19 | 1, 18 | ax-mp 5 | 1 ⊢ inf(ℝ, ℝ*, < ) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 class class class wbr 5141 Or wor 5581 infcinf 9462 ℝcr 11135 -∞cmnf 11274 ℝ*cxr 11275 < clt 11276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-po 5582 df-so 5583 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |