MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmremnf Structured version   Visualization version   GIF version

Theorem infmremnf 13216
Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.)
Assertion
Ref Expression
infmremnf inf(ℝ, ℝ*, < ) = -∞

Proof of Theorem infmremnf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltxrnmnf 13215 . 2 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥)
2 xrltso 13014 . . . 4 < Or ℝ*
32a1i 11 . . 3 (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → < Or ℝ*)
4 mnfxr 11170 . . . 4 -∞ ∈ ℝ*
54a1i 11 . . 3 (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → -∞ ∈ ℝ*)
6 rexr 11159 . . . . 5 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
7 nltmnf 13004 . . . . 5 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
86, 7syl 17 . . . 4 (𝑦 ∈ ℝ → ¬ 𝑦 < -∞)
98adantl 482 . . 3 ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ 𝑦 ∈ ℝ) → ¬ 𝑦 < -∞)
10 breq2 5107 . . . . . . . 8 (𝑥 = 𝑦 → (-∞ < 𝑥 ↔ -∞ < 𝑦))
11 breq2 5107 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑧 < 𝑥𝑧 < 𝑦))
1211rexbidv 3173 . . . . . . . 8 (𝑥 = 𝑦 → (∃𝑧 ∈ ℝ 𝑧 < 𝑥 ↔ ∃𝑧 ∈ ℝ 𝑧 < 𝑦))
1310, 12imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ↔ (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦)))
1413rspcv 3575 . . . . . 6 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦)))
1514com23 86 . . . . 5 (𝑦 ∈ ℝ* → (-∞ < 𝑦 → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦)))
1615imp 407 . . . 4 ((𝑦 ∈ ℝ* ∧ -∞ < 𝑦) → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))
1716impcom 408 . . 3 ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ (𝑦 ∈ ℝ* ∧ -∞ < 𝑦)) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦)
183, 5, 9, 17eqinfd 9379 . 2 (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → inf(ℝ, ℝ*, < ) = -∞)
191, 18ax-mp 5 1 inf(ℝ, ℝ*, < ) = -∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3062  wrex 3071   class class class wbr 5103   Or wor 5542  infcinf 9335  cr 11008  -∞cmnf 11145  *cxr 11146   < clt 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-sup 9336  df-inf 9337  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator