![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infmremnf | Structured version Visualization version GIF version |
Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infmremnf | ⊢ inf(ℝ, ℝ*, < ) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reltxrnmnf 13369 | . 2 ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) | |
2 | xrltso 13168 | . . . 4 ⊢ < Or ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → < Or ℝ*) |
4 | mnfxr 11312 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → -∞ ∈ ℝ*) |
6 | rexr 11301 | . . . . 5 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*) | |
7 | nltmnf 13157 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 < -∞) |
9 | 8 | adantl 480 | . . 3 ⊢ ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ 𝑦 ∈ ℝ) → ¬ 𝑦 < -∞) |
10 | breq2 5149 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (-∞ < 𝑥 ↔ -∞ < 𝑦)) | |
11 | breq2 5149 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 < 𝑥 ↔ 𝑧 < 𝑦)) | |
12 | 11 | rexbidv 3169 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ℝ 𝑧 < 𝑥 ↔ ∃𝑧 ∈ ℝ 𝑧 < 𝑦)) |
13 | 10, 12 | imbi12d 343 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ↔ (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
14 | 13 | rspcv 3603 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
15 | 14 | com23 86 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (-∞ < 𝑦 → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
16 | 15 | imp 405 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ -∞ < 𝑦) → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦)) |
17 | 16 | impcom 406 | . . 3 ⊢ ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ (𝑦 ∈ ℝ* ∧ -∞ < 𝑦)) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦) |
18 | 3, 5, 9, 17 | eqinfd 9521 | . 2 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → inf(ℝ, ℝ*, < ) = -∞) |
19 | 1, 18 | ax-mp 5 | 1 ⊢ inf(ℝ, ℝ*, < ) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 class class class wbr 5145 Or wor 5585 infcinf 9477 ℝcr 11148 -∞cmnf 11287 ℝ*cxr 11288 < clt 11289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9478 df-inf 9479 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |