![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infmrp1 | Structured version Visualization version GIF version |
Description: The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infmrp1 | ⊢ inf(ℝ+, ℝ, < ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpltrp 13403 | . 2 ⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 | |
2 | ltso 11370 | . . . 4 ⊢ < Or ℝ | |
3 | 2 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → < Or ℝ) |
4 | 0red 11293 | . . 3 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → 0 ∈ ℝ) | |
5 | 0red 11293 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 0 ∈ ℝ) | |
6 | rpre 13065 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
7 | rpge0 13070 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 0 ≤ 𝑧) | |
8 | 5, 6, 7 | lensymd 11441 | . . . 4 ⊢ (𝑧 ∈ ℝ+ → ¬ 𝑧 < 0) |
9 | 8 | adantl 481 | . . 3 ⊢ ((∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ 𝑧 ∈ ℝ+) → ¬ 𝑧 < 0) |
10 | elrp 13059 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) | |
11 | breq2 5170 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑧)) | |
12 | 11 | rexbidv 3185 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ↔ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
13 | 12 | rspcv 3631 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
14 | 10, 13 | sylbir 235 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
15 | 14 | impcom 407 | . . 3 ⊢ ((∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧) |
16 | 3, 4, 9, 15 | eqinfd 9554 | . 2 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → inf(ℝ+, ℝ, < ) = 0) |
17 | 1, 16 | ax-mp 5 | 1 ⊢ inf(ℝ+, ℝ, < ) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 Or wor 5606 infcinf 9510 ℝcr 11183 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-rp 13058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |