![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infmrp1 | Structured version Visualization version GIF version |
Description: The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infmrp1 | ⊢ inf(ℝ+, ℝ, < ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpltrp 13319 | . 2 ⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 | |
2 | ltso 11293 | . . . 4 ⊢ < Or ℝ | |
3 | 2 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → < Or ℝ) |
4 | 0red 11216 | . . 3 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → 0 ∈ ℝ) | |
5 | 0red 11216 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 0 ∈ ℝ) | |
6 | rpre 12981 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
7 | rpge0 12986 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 0 ≤ 𝑧) | |
8 | 5, 6, 7 | lensymd 11364 | . . . 4 ⊢ (𝑧 ∈ ℝ+ → ¬ 𝑧 < 0) |
9 | 8 | adantl 482 | . . 3 ⊢ ((∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ 𝑧 ∈ ℝ+) → ¬ 𝑧 < 0) |
10 | elrp 12975 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) | |
11 | breq2 5152 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑧)) | |
12 | 11 | rexbidv 3178 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ↔ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
13 | 12 | rspcv 3608 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
14 | 10, 13 | sylbir 234 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
15 | 14 | impcom 408 | . . 3 ⊢ ((∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧) |
16 | 3, 4, 9, 15 | eqinfd 9479 | . 2 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → inf(ℝ+, ℝ, < ) = 0) |
17 | 1, 16 | ax-mp 5 | 1 ⊢ inf(ℝ+, ℝ, < ) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 class class class wbr 5148 Or wor 5587 infcinf 9435 ℝcr 11108 0cc0 11109 < clt 11247 ℝ+crp 12973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-2 12274 df-rp 12974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |