![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infmrp1 | Structured version Visualization version GIF version |
Description: The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infmrp1 | ⊢ inf(ℝ+, ℝ, < ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpltrp 13269 | . 2 ⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 | |
2 | ltso 11243 | . . . 4 ⊢ < Or ℝ | |
3 | 2 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → < Or ℝ) |
4 | 0red 11166 | . . 3 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → 0 ∈ ℝ) | |
5 | 0red 11166 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 0 ∈ ℝ) | |
6 | rpre 12931 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
7 | rpge0 12936 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 0 ≤ 𝑧) | |
8 | 5, 6, 7 | lensymd 11314 | . . . 4 ⊢ (𝑧 ∈ ℝ+ → ¬ 𝑧 < 0) |
9 | 8 | adantl 483 | . . 3 ⊢ ((∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ 𝑧 ∈ ℝ+) → ¬ 𝑧 < 0) |
10 | elrp 12925 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) | |
11 | breq2 5113 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑧)) | |
12 | 11 | rexbidv 3172 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ↔ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
13 | 12 | rspcv 3579 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
14 | 10, 13 | sylbir 234 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) |
15 | 14 | impcom 409 | . . 3 ⊢ ((∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧) |
16 | 3, 4, 9, 15 | eqinfd 9429 | . 2 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → inf(ℝ+, ℝ, < ) = 0) |
17 | 1, 16 | ax-mp 5 | 1 ⊢ inf(ℝ+, ℝ, < ) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 class class class wbr 5109 Or wor 5548 infcinf 9385 ℝcr 11058 0cc0 11059 < clt 11197 ℝ+crp 12923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-sup 9386 df-inf 9387 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-2 12224 df-rp 12924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |