|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > infmrp1 | Structured version Visualization version GIF version | ||
| Description: The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.) | 
| Ref | Expression | 
|---|---|
| infmrp1 | ⊢ inf(ℝ+, ℝ, < ) = 0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpltrp 13383 | . 2 ⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 | |
| 2 | ltso 11341 | . . . 4 ⊢ < Or ℝ | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → < Or ℝ) | 
| 4 | 0red 11264 | . . 3 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → 0 ∈ ℝ) | |
| 5 | 0red 11264 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 0 ∈ ℝ) | |
| 6 | rpre 13043 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
| 7 | rpge0 13048 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 0 ≤ 𝑧) | |
| 8 | 5, 6, 7 | lensymd 11412 | . . . 4 ⊢ (𝑧 ∈ ℝ+ → ¬ 𝑧 < 0) | 
| 9 | 8 | adantl 481 | . . 3 ⊢ ((∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ 𝑧 ∈ ℝ+) → ¬ 𝑧 < 0) | 
| 10 | elrp 13036 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) | |
| 11 | breq2 5147 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑧)) | |
| 12 | 11 | rexbidv 3179 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ↔ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) | 
| 13 | 12 | rspcv 3618 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) | 
| 14 | 10, 13 | sylbir 235 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧)) | 
| 15 | 14 | impcom 407 | . . 3 ⊢ ((∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) → ∃𝑦 ∈ ℝ+ 𝑦 < 𝑧) | 
| 16 | 3, 4, 9, 15 | eqinfd 9525 | . 2 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 → inf(ℝ+, ℝ, < ) = 0) | 
| 17 | 1, 16 | ax-mp 5 | 1 ⊢ inf(ℝ+, ℝ, < ) = 0 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 Or wor 5591 infcinf 9481 ℝcr 11154 0cc0 11155 < clt 11295 ℝ+crp 13034 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-2 12329 df-rp 13035 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |