MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercpbllem Structured version   Visualization version   GIF version

Theorem ercpbllem 17259
Description: Lemma for ercpbl 17260. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbllem.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
ercpbllem (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem ercpbllem
StepHypRef Expression
1 ercpbl.r . . . 4 (𝜑 Er 𝑉)
2 ercpbl.v . . . 4 (𝜑𝑉𝑊)
3 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
41, 2, 3divsfval 17258 . . 3 (𝜑 → (𝐹𝐴) = [𝐴] )
51, 2, 3divsfval 17258 . . 3 (𝜑 → (𝐹𝐵) = [𝐵] )
64, 5eqeq12d 2754 . 2 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ [𝐴] = [𝐵] ))
7 ercpbllem.1 . . 3 (𝜑𝐴𝑉)
81, 7erth 8547 . 2 (𝜑 → (𝐴 𝐵 ↔ [𝐴] = [𝐵] ))
96, 8bitr4d 281 1 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106   class class class wbr 5074  cmpt 5157  cfv 6433   Er wer 8495  [cec 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-er 8498  df-ec 8500
This theorem is referenced by:  ercpbl  17260  erlecpbl  17261
  Copyright terms: Public domain W3C validator