Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ercpbllem | Structured version Visualization version GIF version |
Description: Lemma for ercpbl 17177. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
ercpbllem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
ercpbllem | ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ercpbl.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
2 | ercpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
3 | ercpbl.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
4 | 1, 2, 3 | divsfval 17175 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
5 | 1, 2, 3 | divsfval 17175 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = [𝐵] ∼ ) |
6 | 4, 5 | eqeq12d 2754 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ [𝐴] ∼ = [𝐵] ∼ )) |
7 | ercpbllem.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | 1, 7 | erth 8505 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ [𝐴] ∼ = [𝐵] ∼ )) |
9 | 6, 8 | bitr4d 281 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 Er wer 8453 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-er 8456 df-ec 8458 |
This theorem is referenced by: ercpbl 17177 erlecpbl 17178 |
Copyright terms: Public domain | W3C validator |