| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ercpbllem | Structured version Visualization version GIF version | ||
| Description: Lemma for ercpbl 17519. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| ercpbllem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ercpbllem | ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 2 | ercpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 3 | ercpbl.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 4 | 1, 2, 3 | divsfval 17517 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| 5 | 1, 2, 3 | divsfval 17517 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = [𝐵] ∼ ) |
| 6 | 4, 5 | eqeq12d 2746 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ [𝐴] ∼ = [𝐵] ∼ )) |
| 7 | ercpbllem.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | 1, 7 | erth 8728 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ [𝐴] ∼ = [𝐵] ∼ )) |
| 9 | 6, 8 | bitr4d 282 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 Er wer 8671 [cec 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-er 8674 df-ec 8676 |
| This theorem is referenced by: ercpbl 17519 erlecpbl 17520 |
| Copyright terms: Public domain | W3C validator |