Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercpbllem Structured version   Visualization version   GIF version

Theorem ercpbllem 16869
 Description: Lemma for ercpbl 16870. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbllem.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
ercpbllem (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem ercpbllem
StepHypRef Expression
1 ercpbl.r . . . 4 (𝜑 Er 𝑉)
2 ercpbl.v . . . 4 (𝜑𝑉𝑊)
3 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
41, 2, 3divsfval 16868 . . 3 (𝜑 → (𝐹𝐴) = [𝐴] )
51, 2, 3divsfval 16868 . . 3 (𝜑 → (𝐹𝐵) = [𝐵] )
64, 5eqeq12d 2775 . 2 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ [𝐴] = [𝐵] ))
7 ercpbllem.1 . . 3 (𝜑𝐴𝑉)
81, 7erth 8346 . 2 (𝜑 → (𝐴 𝐵 ↔ [𝐴] = [𝐵] ))
96, 8bitr4d 285 1 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1539   ∈ wcel 2112   class class class wbr 5030   ↦ cmpt 5110  ‘cfv 6333   Er wer 8294  [cec 8295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fv 6341  df-er 8297  df-ec 8299 This theorem is referenced by:  ercpbl  16870  erlecpbl  16871
 Copyright terms: Public domain W3C validator