Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr-grothshortbi Structured version   Visualization version   GIF version

Theorem rr-grothshortbi 44299
Description: Express "every set is contained in a Grothendieck universe" in a short form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 8-Oct-2024.)
Assertion
Ref Expression
rr-grothshortbi (∀𝑥𝑦 ∈ Univ 𝑥𝑦 ↔ ∀𝑥𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))))
Distinct variable group:   𝑤,𝑓,𝑦,𝑧

Proof of Theorem rr-grothshortbi
StepHypRef Expression
1 df-rex 3055 . . 3 (∃𝑦 ∈ Univ 𝑥𝑦 ↔ ∃𝑦(𝑦 ∈ Univ ∧ 𝑥𝑦))
2 exancom 1861 . . 3 (∃𝑦(𝑦 ∈ Univ ∧ 𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ Univ))
3 dfuniv2 44298 . . . . . 6 Univ = {𝑦 ∣ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))}
43eqabri 2872 . . . . 5 (𝑦 ∈ Univ ↔ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)))
54anbi2i 623 . . . 4 ((𝑥𝑦𝑦 ∈ Univ) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))))
65exbii 1848 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ Univ) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))))
71, 2, 63bitri 297 . 2 (∃𝑦 ∈ Univ 𝑥𝑦 ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))))
87albii 1819 1 (∀𝑥𝑦 ∈ Univ 𝑥𝑦 ↔ ∀𝑥𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538  wex 1779  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  Univcgru 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-tc 9697  df-r1 9724  df-rank 9725  df-card 9899  df-cf 9901  df-acn 9902  df-ac 10076  df-wina 10644  df-ina 10645  df-gru 10751  df-scott 44232  df-coll 44247
This theorem is referenced by:  rr-grothshort  44300
  Copyright terms: Public domain W3C validator