Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartlem Structured version   Visualization version   GIF version

Theorem funpartlem 35982
Description: Lemma for funpartfun 35983. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
funpartlem (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem funpartlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → 𝐴 ∈ V)
2 vsnid 4616 . . . . 5 𝑥 ∈ {𝑥}
3 eleq2 2820 . . . . 5 ((𝐹 “ {𝐴}) = {𝑥} → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ {𝑥}))
42, 3mpbiri 258 . . . 4 ((𝐹 “ {𝐴}) = {𝑥} → 𝑥 ∈ (𝐹 “ {𝐴}))
5 n0i 4290 . . . . 5 (𝑥 ∈ (𝐹 “ {𝐴}) → ¬ (𝐹 “ {𝐴}) = ∅)
6 snprc 4670 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
76biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
87imaeq2d 6009 . . . . . 6 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
9 ima0 6026 . . . . . 6 (𝐹 “ ∅) = ∅
108, 9eqtrdi 2782 . . . . 5 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
115, 10nsyl2 141 . . . 4 (𝑥 ∈ (𝐹 “ {𝐴}) → 𝐴 ∈ V)
124, 11syl 17 . . 3 ((𝐹 “ {𝐴}) = {𝑥} → 𝐴 ∈ V)
1312exlimiv 1931 . 2 (∃𝑥(𝐹 “ {𝐴}) = {𝑥} → 𝐴 ∈ V)
14 eleq1 2819 . . 3 (𝑦 = 𝐴 → (𝑦 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))))
15 sneq 4586 . . . . . 6 (𝑦 = 𝐴 → {𝑦} = {𝐴})
1615imaeq2d 6009 . . . . 5 (𝑦 = 𝐴 → (𝐹 “ {𝑦}) = (𝐹 “ {𝐴}))
1716eqeq1d 2733 . . . 4 (𝑦 = 𝐴 → ((𝐹 “ {𝑦}) = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥}))
1817exbidv 1922 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝐹 “ {𝑦}) = {𝑥} ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}))
19 vex 3440 . . . . 5 𝑦 ∈ V
2019eldm 5840 . . . 4 (𝑦 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑧 𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧)
21 brxp 5665 . . . . . . . . . 10 (𝑦(V × Singletons )𝑧 ↔ (𝑦 ∈ V ∧ 𝑧 Singletons ))
2219, 21mpbiran 709 . . . . . . . . 9 (𝑦(V × Singletons )𝑧𝑧 Singletons )
23 elsingles 35958 . . . . . . . . 9 (𝑧 Singletons ↔ ∃𝑥 𝑧 = {𝑥})
2422, 23bitri 275 . . . . . . . 8 (𝑦(V × Singletons )𝑧 ↔ ∃𝑥 𝑧 = {𝑥})
2524anbi2i 623 . . . . . . 7 ((𝑦(Image𝐹 ∘ Singleton)𝑧𝑦(V × Singletons )𝑧) ↔ (𝑦(Image𝐹 ∘ Singleton)𝑧 ∧ ∃𝑥 𝑧 = {𝑥}))
26 brin 5143 . . . . . . 7 (𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧 ↔ (𝑦(Image𝐹 ∘ Singleton)𝑧𝑦(V × Singletons )𝑧))
27 19.42v 1954 . . . . . . 7 (∃𝑥(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ (𝑦(Image𝐹 ∘ Singleton)𝑧 ∧ ∃𝑥 𝑧 = {𝑥}))
2825, 26, 273bitr4i 303 . . . . . 6 (𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧 ↔ ∃𝑥(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}))
2928exbii 1849 . . . . 5 (∃𝑧 𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧 ↔ ∃𝑧𝑥(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}))
30 excom 2165 . . . . 5 (∃𝑧𝑥(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ ∃𝑥𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}))
3129, 30bitri 275 . . . 4 (∃𝑧 𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧 ↔ ∃𝑥𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}))
32 exancom 1862 . . . . . 6 (∃𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ ∃𝑧(𝑧 = {𝑥} ∧ 𝑦(Image𝐹 ∘ Singleton)𝑧))
33 vsnex 5372 . . . . . . 7 {𝑥} ∈ V
34 breq2 5095 . . . . . . 7 (𝑧 = {𝑥} → (𝑦(Image𝐹 ∘ Singleton)𝑧𝑦(Image𝐹 ∘ Singleton){𝑥}))
3533, 34ceqsexv 3487 . . . . . 6 (∃𝑧(𝑧 = {𝑥} ∧ 𝑦(Image𝐹 ∘ Singleton)𝑧) ↔ 𝑦(Image𝐹 ∘ Singleton){𝑥})
3619, 33brco 5810 . . . . . . 7 (𝑦(Image𝐹 ∘ Singleton){𝑥} ↔ ∃𝑧(𝑦Singleton𝑧𝑧Image𝐹{𝑥}))
37 vex 3440 . . . . . . . . . 10 𝑧 ∈ V
3819, 37brsingle 35957 . . . . . . . . 9 (𝑦Singleton𝑧𝑧 = {𝑦})
3938anbi1i 624 . . . . . . . 8 ((𝑦Singleton𝑧𝑧Image𝐹{𝑥}) ↔ (𝑧 = {𝑦} ∧ 𝑧Image𝐹{𝑥}))
4039exbii 1849 . . . . . . 7 (∃𝑧(𝑦Singleton𝑧𝑧Image𝐹{𝑥}) ↔ ∃𝑧(𝑧 = {𝑦} ∧ 𝑧Image𝐹{𝑥}))
41 vsnex 5372 . . . . . . . . 9 {𝑦} ∈ V
42 breq1 5094 . . . . . . . . 9 (𝑧 = {𝑦} → (𝑧Image𝐹{𝑥} ↔ {𝑦}Image𝐹{𝑥}))
4341, 42ceqsexv 3487 . . . . . . . 8 (∃𝑧(𝑧 = {𝑦} ∧ 𝑧Image𝐹{𝑥}) ↔ {𝑦}Image𝐹{𝑥})
4441, 33brimage 35966 . . . . . . . 8 ({𝑦}Image𝐹{𝑥} ↔ {𝑥} = (𝐹 “ {𝑦}))
45 eqcom 2738 . . . . . . . 8 ({𝑥} = (𝐹 “ {𝑦}) ↔ (𝐹 “ {𝑦}) = {𝑥})
4643, 44, 453bitri 297 . . . . . . 7 (∃𝑧(𝑧 = {𝑦} ∧ 𝑧Image𝐹{𝑥}) ↔ (𝐹 “ {𝑦}) = {𝑥})
4736, 40, 463bitri 297 . . . . . 6 (𝑦(Image𝐹 ∘ Singleton){𝑥} ↔ (𝐹 “ {𝑦}) = {𝑥})
4832, 35, 473bitri 297 . . . . 5 (∃𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ (𝐹 “ {𝑦}) = {𝑥})
4948exbii 1849 . . . 4 (∃𝑥𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ ∃𝑥(𝐹 “ {𝑦}) = {𝑥})
5020, 31, 493bitri 297 . . 3 (𝑦 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝑦}) = {𝑥})
5114, 18, 50vtoclbg 3512 . 2 (𝐴 ∈ V → (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}))
521, 13, 51pm5.21nii 378 1 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cin 3901  c0 4283  {csn 4576   class class class wbr 5091   × cxp 5614  dom cdm 5616  cima 5619  ccom 5620  Singletoncsingle 35878   Singletons csingles 35879  Imagecimage 35880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-symdif 4203  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35894  df-singleton 35902  df-singles 35903  df-image 35904
This theorem is referenced by:  funpartfun  35983  funpartfv  35985
  Copyright terms: Public domain W3C validator