Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartlem Structured version   Visualization version   GIF version

Theorem funpartlem 35779
Description: Lemma for funpartfun 35780. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
funpartlem (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem funpartlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → 𝐴 ∈ V)
2 vsnid 4660 . . . . 5 𝑥 ∈ {𝑥}
3 eleq2 2815 . . . . 5 ((𝐹 “ {𝐴}) = {𝑥} → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ {𝑥}))
42, 3mpbiri 257 . . . 4 ((𝐹 “ {𝐴}) = {𝑥} → 𝑥 ∈ (𝐹 “ {𝐴}))
5 n0i 4333 . . . . 5 (𝑥 ∈ (𝐹 “ {𝐴}) → ¬ (𝐹 “ {𝐴}) = ∅)
6 snprc 4716 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
76biimpi 215 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
87imaeq2d 6061 . . . . . 6 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
9 ima0 6078 . . . . . 6 (𝐹 “ ∅) = ∅
108, 9eqtrdi 2782 . . . . 5 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
115, 10nsyl2 141 . . . 4 (𝑥 ∈ (𝐹 “ {𝐴}) → 𝐴 ∈ V)
124, 11syl 17 . . 3 ((𝐹 “ {𝐴}) = {𝑥} → 𝐴 ∈ V)
1312exlimiv 1926 . 2 (∃𝑥(𝐹 “ {𝐴}) = {𝑥} → 𝐴 ∈ V)
14 eleq1 2814 . . 3 (𝑦 = 𝐴 → (𝑦 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))))
15 sneq 4633 . . . . . 6 (𝑦 = 𝐴 → {𝑦} = {𝐴})
1615imaeq2d 6061 . . . . 5 (𝑦 = 𝐴 → (𝐹 “ {𝑦}) = (𝐹 “ {𝐴}))
1716eqeq1d 2728 . . . 4 (𝑦 = 𝐴 → ((𝐹 “ {𝑦}) = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥}))
1817exbidv 1917 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝐹 “ {𝑦}) = {𝑥} ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}))
19 vex 3466 . . . . 5 𝑦 ∈ V
2019eldm 5899 . . . 4 (𝑦 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑧 𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧)
21 brxp 5723 . . . . . . . . . 10 (𝑦(V × Singletons )𝑧 ↔ (𝑦 ∈ V ∧ 𝑧 Singletons ))
2219, 21mpbiran 707 . . . . . . . . 9 (𝑦(V × Singletons )𝑧𝑧 Singletons )
23 elsingles 35755 . . . . . . . . 9 (𝑧 Singletons ↔ ∃𝑥 𝑧 = {𝑥})
2422, 23bitri 274 . . . . . . . 8 (𝑦(V × Singletons )𝑧 ↔ ∃𝑥 𝑧 = {𝑥})
2524anbi2i 621 . . . . . . 7 ((𝑦(Image𝐹 ∘ Singleton)𝑧𝑦(V × Singletons )𝑧) ↔ (𝑦(Image𝐹 ∘ Singleton)𝑧 ∧ ∃𝑥 𝑧 = {𝑥}))
26 brin 5197 . . . . . . 7 (𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧 ↔ (𝑦(Image𝐹 ∘ Singleton)𝑧𝑦(V × Singletons )𝑧))
27 19.42v 1950 . . . . . . 7 (∃𝑥(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ (𝑦(Image𝐹 ∘ Singleton)𝑧 ∧ ∃𝑥 𝑧 = {𝑥}))
2825, 26, 273bitr4i 302 . . . . . 6 (𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧 ↔ ∃𝑥(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}))
2928exbii 1843 . . . . 5 (∃𝑧 𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧 ↔ ∃𝑧𝑥(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}))
30 excom 2152 . . . . 5 (∃𝑧𝑥(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ ∃𝑥𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}))
3129, 30bitri 274 . . . 4 (∃𝑧 𝑦((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))𝑧 ↔ ∃𝑥𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}))
32 exancom 1857 . . . . . 6 (∃𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ ∃𝑧(𝑧 = {𝑥} ∧ 𝑦(Image𝐹 ∘ Singleton)𝑧))
33 vsnex 5427 . . . . . . 7 {𝑥} ∈ V
34 breq2 5149 . . . . . . 7 (𝑧 = {𝑥} → (𝑦(Image𝐹 ∘ Singleton)𝑧𝑦(Image𝐹 ∘ Singleton){𝑥}))
3533, 34ceqsexv 3515 . . . . . 6 (∃𝑧(𝑧 = {𝑥} ∧ 𝑦(Image𝐹 ∘ Singleton)𝑧) ↔ 𝑦(Image𝐹 ∘ Singleton){𝑥})
3619, 33brco 5869 . . . . . . 7 (𝑦(Image𝐹 ∘ Singleton){𝑥} ↔ ∃𝑧(𝑦Singleton𝑧𝑧Image𝐹{𝑥}))
37 vex 3466 . . . . . . . . . 10 𝑧 ∈ V
3819, 37brsingle 35754 . . . . . . . . 9 (𝑦Singleton𝑧𝑧 = {𝑦})
3938anbi1i 622 . . . . . . . 8 ((𝑦Singleton𝑧𝑧Image𝐹{𝑥}) ↔ (𝑧 = {𝑦} ∧ 𝑧Image𝐹{𝑥}))
4039exbii 1843 . . . . . . 7 (∃𝑧(𝑦Singleton𝑧𝑧Image𝐹{𝑥}) ↔ ∃𝑧(𝑧 = {𝑦} ∧ 𝑧Image𝐹{𝑥}))
41 vsnex 5427 . . . . . . . . 9 {𝑦} ∈ V
42 breq1 5148 . . . . . . . . 9 (𝑧 = {𝑦} → (𝑧Image𝐹{𝑥} ↔ {𝑦}Image𝐹{𝑥}))
4341, 42ceqsexv 3515 . . . . . . . 8 (∃𝑧(𝑧 = {𝑦} ∧ 𝑧Image𝐹{𝑥}) ↔ {𝑦}Image𝐹{𝑥})
4441, 33brimage 35763 . . . . . . . 8 ({𝑦}Image𝐹{𝑥} ↔ {𝑥} = (𝐹 “ {𝑦}))
45 eqcom 2733 . . . . . . . 8 ({𝑥} = (𝐹 “ {𝑦}) ↔ (𝐹 “ {𝑦}) = {𝑥})
4643, 44, 453bitri 296 . . . . . . 7 (∃𝑧(𝑧 = {𝑦} ∧ 𝑧Image𝐹{𝑥}) ↔ (𝐹 “ {𝑦}) = {𝑥})
4736, 40, 463bitri 296 . . . . . 6 (𝑦(Image𝐹 ∘ Singleton){𝑥} ↔ (𝐹 “ {𝑦}) = {𝑥})
4832, 35, 473bitri 296 . . . . 5 (∃𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ (𝐹 “ {𝑦}) = {𝑥})
4948exbii 1843 . . . 4 (∃𝑥𝑧(𝑦(Image𝐹 ∘ Singleton)𝑧𝑧 = {𝑥}) ↔ ∃𝑥(𝐹 “ {𝑦}) = {𝑥})
5020, 31, 493bitri 296 . . 3 (𝑦 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝑦}) = {𝑥})
5114, 18, 50vtoclbg 3536 . 2 (𝐴 ∈ V → (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}))
521, 13, 51pm5.21nii 377 1 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394   = wceq 1534  wex 1774  wcel 2099  Vcvv 3462  cin 3945  c0 4322  {csn 4623   class class class wbr 5145   × cxp 5672  dom cdm 5674  cima 5677  ccom 5678  Singletoncsingle 35675   Singletons csingles 35676  Imagecimage 35677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-symdif 4241  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-eprel 5578  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fo 6552  df-fv 6554  df-1st 7995  df-2nd 7996  df-txp 35691  df-singleton 35699  df-singles 35700  df-image 35701
This theorem is referenced by:  funpartfun  35780  funpartfv  35782
  Copyright terms: Public domain W3C validator