MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom3g Structured version   Visualization version   GIF version

Theorem f1dom3g 8710
Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8715 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
f1dom3g ((𝐹𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom3g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1eq1 6649 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
21spcegv 3526 . . . 4 (𝐹𝑉 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
32imp 406 . . 3 ((𝐹𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
433adant2 1129 . 2 ((𝐹𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
5 brdomg 8703 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
653ad2ant2 1132 . 2 ((𝐹𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
74, 6mpbird 256 1 ((𝐹𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085  wex 1783  wcel 2108   class class class wbr 5070  1-1wf1 6415  cdom 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-dom 8693
This theorem is referenced by:  f1dom2g  8712  f1domfi  8928
  Copyright terms: Public domain W3C validator