![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1dom3g | Structured version Visualization version GIF version |
Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8912 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by BTernaryTau, 9-Sep-2024.) |
Ref | Expression |
---|---|
f1dom3g | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq1 6733 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→𝐵)) | |
2 | 1 | spcegv 3556 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
3 | 2 | imp 407 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
4 | 3 | 3adant2 1131 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
5 | brdomg 8896 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
7 | 4, 6 | mpbird 256 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 ∃wex 1781 ∈ wcel 2106 class class class wbr 5105 –1-1→wf1 6493 ≼ cdom 8881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-dom 8885 |
This theorem is referenced by: f1dom2g 8909 undom 9003 f1domfi 9128 f1domfi2 9129 sucdom2 9150 |
Copyright terms: Public domain | W3C validator |