|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > f1dom3g | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 9012 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by BTernaryTau, 9-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| f1dom3g | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1eq1 6799 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→𝐵)) | |
| 2 | 1 | spcegv 3597 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) | 
| 3 | 2 | imp 406 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) | 
| 4 | 3 | 3adant2 1132 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) | 
| 5 | brdomg 8997 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 6 | 5 | 3ad2ant2 1135 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | 
| 7 | 4, 6 | mpbird 257 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∃wex 1779 ∈ wcel 2108 class class class wbr 5143 –1-1→wf1 6558 ≼ cdom 8983 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-dom 8987 | 
| This theorem is referenced by: f1dom2g 9010 undom 9099 f1domfi 9221 f1domfi2 9222 sucdom2 9243 | 
| Copyright terms: Public domain | W3C validator |