MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom3g Structured version   Visualization version   GIF version

Theorem f1dom3g 8755
Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8760 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
f1dom3g ((𝐹𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom3g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1eq1 6665 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
21spcegv 3536 . . . 4 (𝐹𝑉 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
32imp 407 . . 3 ((𝐹𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
433adant2 1130 . 2 ((𝐹𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
5 brdomg 8746 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
653ad2ant2 1133 . 2 ((𝐹𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
74, 6mpbird 256 1 ((𝐹𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wex 1782  wcel 2106   class class class wbr 5074  1-1wf1 6430  cdom 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-dom 8735
This theorem is referenced by:  f1dom2g  8757  undom  8846  f1domfi  8967  f1domfi2  8968  sucdom2  8989
  Copyright terms: Public domain W3C validator