| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oen2g | Structured version Visualization version GIF version | ||
| Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 8896 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| f1oen2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of 6764 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fex2 7869 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) | |
| 3 | 1, 2 | syl3an1 1163 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| 4 | 3 | 3coml 1127 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ V) |
| 5 | simp3 1138 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 6 | f1oen3g 8892 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 7 | 4, 5, 6 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 ⟶wf 6478 –1-1-onto→wf1o 6481 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-en 8873 |
| This theorem is referenced by: f1oeng 8896 enrefg 8909 en2d 8913 en3d 8914 ener 8926 f1imaen2g 8940 cnven 8958 xpcomen 8985 omxpen 8996 pw2eng 9000 unfilem3 9196 hsmexlem1 10320 iccen 13400 uzenom 13871 nnenom 13887 eqgen 19060 dfod2 19443 hmphen 23670 clwlkclwwlken 29956 clwwlken 29996 clwwlknonclwlknonen 30307 dlwwlknondlwlknonen 30310 |
| Copyright terms: Public domain | W3C validator |