MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen2g Structured version   Visualization version   GIF version

Theorem f1oen2g 8940
Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 8942 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
f1oen2g ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oen2g
StepHypRef Expression
1 f1of 6800 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2 fex2 7912 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1163 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
433coml 1127 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ V)
5 simp3 1138 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐹:𝐴1-1-onto𝐵)
6 f1oen3g 8938 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
74, 5, 6syl2anc 584 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  Vcvv 3447   class class class wbr 5107  wf 6507  1-1-ontowf1o 6510  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-en 8919
This theorem is referenced by:  f1oeng  8942  enrefg  8955  en2d  8959  en3d  8960  ener  8972  f1imaen2g  8986  cnven  9004  xpcomen  9032  omxpen  9043  pw2eng  9047  unfilem3  9256  xpfiOLD  9270  hsmexlem1  10379  iccen  13458  uzenom  13929  nnenom  13945  eqgen  19113  dfod2  19494  hmphen  23672  clwlkclwwlken  29941  clwwlken  29981  clwwlknonclwlknonen  30292  dlwwlknondlwlknonen  30295
  Copyright terms: Public domain W3C validator