MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen2g Structured version   Visualization version   GIF version

Theorem f1oen2g 8748
Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 8751 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
f1oen2g ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oen2g
StepHypRef Expression
1 f1of 6714 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2 fex2 7775 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1162 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
433coml 1126 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ V)
5 simp3 1137 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐹:𝐴1-1-onto𝐵)
6 f1oen3g 8746 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
74, 5, 6syl2anc 584 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2110  Vcvv 3431   class class class wbr 5079  wf 6428  1-1-ontowf1o 6431  cen 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-en 8726
This theorem is referenced by:  f1oeng  8751  enrefg  8764  en2d  8768  en3d  8769  ener  8779  f1imaen2g  8793  cnven  8815  xpcomen  8841  omxpen  8852  pw2eng  8856  unfilem3  9068  xpfi  9073  hsmexlem1  10193  iccen  13240  uzenom  13695  nnenom  13711  eqgen  18820  dfod2  19182  hmphen  22947  clwlkclwwlken  28385  clwwlken  28425  clwwlknonclwlknonen  28736  dlwwlknondlwlknonen  28739
  Copyright terms: Public domain W3C validator