Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oen2g | Structured version Visualization version GIF version |
Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 8768 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
f1oen2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 6725 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fex2 7789 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) | |
3 | 1, 2 | syl3an1 1162 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
4 | 3 | 3coml 1126 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ V) |
5 | simp3 1137 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
6 | f1oen3g 8763 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
7 | 4, 5, 6 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 Vcvv 3433 class class class wbr 5075 ⟶wf 6433 –1-1-onto→wf1o 6436 ≈ cen 8739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-en 8743 |
This theorem is referenced by: f1oeng 8768 enrefg 8781 en2d 8785 en3d 8786 ener 8796 f1imaen2g 8810 cnven 8832 xpcomen 8859 omxpen 8870 pw2eng 8874 unfilem3 9089 xpfi 9094 hsmexlem1 10191 iccen 13238 uzenom 13693 nnenom 13709 eqgen 18818 dfod2 19180 hmphen 22945 clwlkclwwlken 28385 clwwlken 28425 clwwlknonclwlknonen 28736 dlwwlknondlwlknonen 28739 |
Copyright terms: Public domain | W3C validator |