| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1imaen3g | Structured version Visualization version GIF version | ||
| Description: If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng 9033 does not need ax-rep 5254 nor ax-pow 5340.) (Contributed by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| f1imaen3g | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg 6019 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ 𝐶) ∈ V) | |
| 2 | 1 | 3ad2ant3 1135 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ 𝑉) → (𝐹 ↾ 𝐶) ∈ V) |
| 3 | f1ores 6837 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ 𝑉) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
| 5 | f1oen3g 8986 | . 2 ⊢ (((𝐹 ↾ 𝐶) ∈ V ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → 𝐶 ≈ (𝐹 “ 𝐶)) | |
| 6 | 2, 4, 5 | syl2anc 584 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 ↾ cres 5661 “ cima 5662 –1-1→wf1 6533 –1-1-onto→wf1o 6535 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-en 8965 |
| This theorem is referenced by: fiint 9343 |
| Copyright terms: Public domain | W3C validator |