MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaen3g Structured version   Visualization version   GIF version

Theorem f1imaen3g 8938
Description: If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng 8936 does not need ax-rep 5215 nor ax-pow 5301.) (Contributed by BTernaryTau, 13-Jan-2025.)
Assertion
Ref Expression
f1imaen3g ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → 𝐶 ≈ (𝐹𝐶))

Proof of Theorem f1imaen3g
StepHypRef Expression
1 resexg 5975 . . 3 (𝐹𝑉 → (𝐹𝐶) ∈ V)
213ad2ant3 1135 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → (𝐹𝐶) ∈ V)
3 f1ores 6777 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
433adant3 1132 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
5 f1oen3g 8889 . 2 (((𝐹𝐶) ∈ V ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
62, 4, 5syl2anc 584 1 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → 𝐶 ≈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  Vcvv 3436  wss 3897   class class class wbr 5089  cres 5616  cima 5617  1-1wf1 6478  1-1-ontowf1o 6480  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-en 8870
This theorem is referenced by:  fiint  9211
  Copyright terms: Public domain W3C validator