MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaen3g Structured version   Visualization version   GIF version

Theorem f1imaen3g 9076
Description: If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng 9074 does not need ax-rep 5303 nor ax-pow 5383.) (Contributed by BTernaryTau, 13-Jan-2025.)
Assertion
Ref Expression
f1imaen3g ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → 𝐶 ≈ (𝐹𝐶))

Proof of Theorem f1imaen3g
StepHypRef Expression
1 resexg 6056 . . 3 (𝐹𝑉 → (𝐹𝐶) ∈ V)
213ad2ant3 1135 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → (𝐹𝐶) ∈ V)
3 f1ores 6876 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
433adant3 1132 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
5 f1oen3g 9026 . 2 (((𝐹𝐶) ∈ V ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
62, 4, 5syl2anc 583 1 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → 𝐶 ≈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  cres 5702  cima 5703  1-1wf1 6570  1-1-ontowf1o 6572  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-en 9004
This theorem is referenced by:  fiint  9394
  Copyright terms: Public domain W3C validator