MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaen3g Structured version   Visualization version   GIF version

Theorem f1imaen3g 9035
Description: If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng 9033 does not need ax-rep 5254 nor ax-pow 5340.) (Contributed by BTernaryTau, 13-Jan-2025.)
Assertion
Ref Expression
f1imaen3g ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → 𝐶 ≈ (𝐹𝐶))

Proof of Theorem f1imaen3g
StepHypRef Expression
1 resexg 6019 . . 3 (𝐹𝑉 → (𝐹𝐶) ∈ V)
213ad2ant3 1135 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → (𝐹𝐶) ∈ V)
3 f1ores 6837 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
433adant3 1132 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
5 f1oen3g 8986 . 2 (((𝐹𝐶) ∈ V ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
62, 4, 5syl2anc 584 1 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐹𝑉) → 𝐶 ≈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  Vcvv 3464  wss 3931   class class class wbr 5124  cres 5661  cima 5662  1-1wf1 6533  1-1-ontowf1o 6535  cen 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-en 8965
This theorem is referenced by:  fiint  9343
  Copyright terms: Public domain W3C validator