MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaen2g Structured version   Visualization version   GIF version

Theorem f1imaen2g 9007
Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng 9006 does not need ax-rep 5275.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
f1imaen2g (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)

Proof of Theorem f1imaen2g
StepHypRef Expression
1 simprr 770 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶𝑉)
2 simplr 766 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐵𝑉)
3 f1f 6777 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
4 fimass 6728 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐶) ⊆ 𝐵)
53, 4syl 17 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹𝐶) ⊆ 𝐵)
65ad2antrr 723 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ⊆ 𝐵)
72, 6ssexd 5314 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ∈ V)
8 f1ores 6837 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
98ad2ant2r 744 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
10 f1oen2g 8960 . . 3 ((𝐶𝑉 ∧ (𝐹𝐶) ∈ V ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
111, 7, 9, 10syl3anc 1368 . 2 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶 ≈ (𝐹𝐶))
1211ensymd 8997 1 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  Vcvv 3466  wss 3940   class class class wbr 5138  cres 5668  cima 5669  wf 6529  1-1wf1 6530  1-1-ontowf1o 6532  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-er 8699  df-en 8936
This theorem is referenced by:  ssenen  9147  phplem4OLD  9216  fiint  9320  unxpwdom2  9579  znunithash  21427
  Copyright terms: Public domain W3C validator