MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaen2g Structured version   Visualization version   GIF version

Theorem f1imaen2g 8937
Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng 8936 does not need ax-rep 5217.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
f1imaen2g (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)

Proof of Theorem f1imaen2g
StepHypRef Expression
1 simprr 772 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶𝑉)
2 simplr 768 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐵𝑉)
3 f1f 6719 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
4 fimass 6671 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐶) ⊆ 𝐵)
53, 4syl 17 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹𝐶) ⊆ 𝐵)
65ad2antrr 726 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ⊆ 𝐵)
72, 6ssexd 5262 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ∈ V)
8 f1ores 6777 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
98ad2ant2r 747 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
10 f1oen2g 8891 . . 3 ((𝐶𝑉 ∧ (𝐹𝐶) ∈ V ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
111, 7, 9, 10syl3anc 1373 . 2 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶 ≈ (𝐹𝐶))
1211ensymd 8927 1 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436  wss 3902   class class class wbr 5091  cres 5618  cima 5619  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-er 8622  df-en 8870
This theorem is referenced by:  ssenen  9064  unxpwdom2  9474  znunithash  21502
  Copyright terms: Public domain W3C validator