MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaen2g Structured version   Visualization version   GIF version

Theorem f1imaen2g 8801
Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng 8800 does not need ax-rep 5209.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
f1imaen2g (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)

Proof of Theorem f1imaen2g
StepHypRef Expression
1 simprr 770 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶𝑉)
2 simplr 766 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐵𝑉)
3 f1f 6670 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
4 fimass 6621 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐶) ⊆ 𝐵)
53, 4syl 17 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹𝐶) ⊆ 𝐵)
65ad2antrr 723 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ⊆ 𝐵)
72, 6ssexd 5248 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ∈ V)
8 f1ores 6730 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
98ad2ant2r 744 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
10 f1oen2g 8756 . . 3 ((𝐶𝑉 ∧ (𝐹𝐶) ∈ V ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
111, 7, 9, 10syl3anc 1370 . 2 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶 ≈ (𝐹𝐶))
1211ensymd 8791 1 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  cres 5591  cima 5592  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-er 8498  df-en 8734
This theorem is referenced by:  ssenen  8938  phplem4OLD  9003  fiint  9091  unxpwdom2  9347  znunithash  20772
  Copyright terms: Public domain W3C validator