![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imaen2g | Structured version Visualization version GIF version |
Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng 9043 does not need ax-rep 5289.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
f1imaen2g | ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
2 | simplr 767 | . . . 4 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
3 | f1f 6798 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
4 | fimass 6748 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝐶) ⊆ 𝐵) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 “ 𝐶) ⊆ 𝐵) |
6 | 5 | ad2antrr 724 | . . . 4 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ⊆ 𝐵) |
7 | 2, 6 | ssexd 5328 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ∈ V) |
8 | f1ores 6858 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
9 | 8 | ad2ant2r 745 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
10 | f1oen2g 8997 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ (𝐹 “ 𝐶) ∈ V ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → 𝐶 ≈ (𝐹 “ 𝐶)) | |
11 | 1, 7, 9, 10 | syl3anc 1368 | . 2 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ≈ (𝐹 “ 𝐶)) |
12 | 11 | ensymd 9034 | 1 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 Vcvv 3473 ⊆ wss 3949 class class class wbr 5152 ↾ cres 5684 “ cima 5685 ⟶wf 6549 –1-1→wf1 6550 –1-1-onto→wf1o 6552 ≈ cen 8969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-er 8733 df-en 8973 |
This theorem is referenced by: ssenen 9184 phplem4OLD 9253 fiint 9358 unxpwdom2 9621 znunithash 21512 |
Copyright terms: Public domain | W3C validator |