MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaeng Structured version   Visualization version   GIF version

Theorem f1imaeng 8781
Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
f1imaeng ((𝐹:𝐴1-1𝐵𝐶𝐴𝐶𝑉) → (𝐹𝐶) ≈ 𝐶)

Proof of Theorem f1imaeng
StepHypRef Expression
1 f1ores 6727 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
2 f1oeng 8740 . . . 4 ((𝐶𝑉 ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
32ancoms 459 . . 3 (((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) ∧ 𝐶𝑉) → 𝐶 ≈ (𝐹𝐶))
41, 3stoic3 1783 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐶𝑉) → 𝐶 ≈ (𝐹𝐶))
54ensymd 8772 1 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐶𝑉) → (𝐹𝐶) ≈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2110  wss 3892   class class class wbr 5079  cres 5591  cima 5592  1-1wf1 6428  1-1-ontowf1o 6430  cen 8711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-er 8479  df-en 8715
This theorem is referenced by:  f1imaen  8783  ackbij1b  9994  enfin1ai  10139  isercolllem2  15373  pmtrfconj  19070  f1rnen  30958  dimkerim  31702  ballotlemro  32483
  Copyright terms: Public domain W3C validator