![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imaeng | Structured version Visualization version GIF version |
Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
f1imaeng | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ores 6799 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
2 | f1oeng 8914 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → 𝐶 ≈ (𝐹 “ 𝐶)) | |
3 | 2 | ancoms 460 | . . 3 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ∧ 𝐶 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) |
4 | 1, 3 | stoic3 1779 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) |
5 | 4 | ensymd 8948 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 ⊆ wss 3911 class class class wbr 5106 ↾ cres 5636 “ cima 5637 –1-1→wf1 6494 –1-1-onto→wf1o 6496 ≈ cen 8883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-er 8651 df-en 8887 |
This theorem is referenced by: f1imaen 8959 ackbij1b 10180 enfin1ai 10325 isercolllem2 15556 pmtrfconj 19253 f1rnen 31589 dimkerim 32379 ballotlemro 33179 |
Copyright terms: Public domain | W3C validator |