![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imaeq | Structured version Visualization version GIF version |
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
f1imaeq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1imass 6793 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ↔ 𝐶 ⊆ 𝐷)) | |
2 | f1imass 6793 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐷 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴)) → ((𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶) ↔ 𝐷 ⊆ 𝐶)) | |
3 | 2 | ancom2s 640 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶) ↔ 𝐷 ⊆ 𝐶)) |
4 | 1, 3 | anbi12d 624 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → (((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ (𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶)) ↔ (𝐶 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐶))) |
5 | eqss 3836 | . 2 ⊢ ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ (𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶))) | |
6 | eqss 3836 | . 2 ⊢ (𝐶 = 𝐷 ↔ (𝐶 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐶)) | |
7 | 4, 5, 6 | 3bitr4g 306 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ⊆ wss 3792 “ cima 5358 –1-1→wf1 6132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fv 6143 |
This theorem is referenced by: f1imapss 6795 dfac12lem2 9301 hmeoimaf1o 21982 imasf1oxms 22702 isomuspgrlem2c 42743 |
Copyright terms: Public domain | W3C validator |