![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imaeq | Structured version Visualization version GIF version |
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
f1imaeq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1imass 7280 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ↔ 𝐶 ⊆ 𝐷)) | |
2 | f1imass 7280 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐷 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴)) → ((𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶) ↔ 𝐷 ⊆ 𝐶)) | |
3 | 2 | ancom2s 648 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶) ↔ 𝐷 ⊆ 𝐶)) |
4 | 1, 3 | anbi12d 630 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → (((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ (𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶)) ↔ (𝐶 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐶))) |
5 | eqss 3997 | . 2 ⊢ ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ (𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶))) | |
6 | eqss 3997 | . 2 ⊢ (𝐶 = 𝐷 ↔ (𝐶 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐶)) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ⊆ wss 3949 “ cima 5685 –1-1→wf1 6550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fv 6561 |
This theorem is referenced by: f1imapss 7282 dfac12lem2 10175 hmeoimaf1o 23694 imasf1oxms 24418 isuspgrim0 47248 isuspgrimlem 47250 |
Copyright terms: Public domain | W3C validator |