MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaeq Structured version   Visualization version   GIF version

Theorem f1imaeq 7263
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imaeq ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))

Proof of Theorem f1imaeq
StepHypRef Expression
1 f1imass 7262 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
2 f1imass 7262 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝐷𝐴𝐶𝐴)) → ((𝐹𝐷) ⊆ (𝐹𝐶) ↔ 𝐷𝐶))
32ancom2s 648 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐷) ⊆ (𝐹𝐶) ↔ 𝐷𝐶))
41, 3anbi12d 631 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐶) ⊆ (𝐹𝐷) ∧ (𝐹𝐷) ⊆ (𝐹𝐶)) ↔ (𝐶𝐷𝐷𝐶)))
5 eqss 3997 . 2 ((𝐹𝐶) = (𝐹𝐷) ↔ ((𝐹𝐶) ⊆ (𝐹𝐷) ∧ (𝐹𝐷) ⊆ (𝐹𝐶)))
6 eqss 3997 . 2 (𝐶 = 𝐷 ↔ (𝐶𝐷𝐷𝐶))
74, 5, 63bitr4g 313 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wss 3948  cima 5679  1-1wf1 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fv 6551
This theorem is referenced by:  f1imapss  7264  dfac12lem2  10138  hmeoimaf1o  23273  imasf1oxms  23997  isomuspgrlem2c  46488
  Copyright terms: Public domain W3C validator