MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaeq Structured version   Visualization version   GIF version

Theorem f1imaeq 7281
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imaeq ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))

Proof of Theorem f1imaeq
StepHypRef Expression
1 f1imass 7280 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
2 f1imass 7280 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝐷𝐴𝐶𝐴)) → ((𝐹𝐷) ⊆ (𝐹𝐶) ↔ 𝐷𝐶))
32ancom2s 648 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐷) ⊆ (𝐹𝐶) ↔ 𝐷𝐶))
41, 3anbi12d 630 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐶) ⊆ (𝐹𝐷) ∧ (𝐹𝐷) ⊆ (𝐹𝐶)) ↔ (𝐶𝐷𝐷𝐶)))
5 eqss 3997 . 2 ((𝐹𝐶) = (𝐹𝐷) ↔ ((𝐹𝐶) ⊆ (𝐹𝐷) ∧ (𝐹𝐷) ⊆ (𝐹𝐶)))
6 eqss 3997 . 2 (𝐶 = 𝐷 ↔ (𝐶𝐷𝐷𝐶))
74, 5, 63bitr4g 313 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wss 3949  cima 5685  1-1wf1 6550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fv 6561
This theorem is referenced by:  f1imapss  7282  dfac12lem2  10175  hmeoimaf1o  23694  imasf1oxms  24418  isuspgrim0  47248  isuspgrimlem  47250
  Copyright terms: Public domain W3C validator