MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaeq Structured version   Visualization version   GIF version

Theorem f1imaeq 7138
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imaeq ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))

Proof of Theorem f1imaeq
StepHypRef Expression
1 f1imass 7137 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
2 f1imass 7137 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝐷𝐴𝐶𝐴)) → ((𝐹𝐷) ⊆ (𝐹𝐶) ↔ 𝐷𝐶))
32ancom2s 647 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐷) ⊆ (𝐹𝐶) ↔ 𝐷𝐶))
41, 3anbi12d 631 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐶) ⊆ (𝐹𝐷) ∧ (𝐹𝐷) ⊆ (𝐹𝐶)) ↔ (𝐶𝐷𝐷𝐶)))
5 eqss 3936 . 2 ((𝐹𝐶) = (𝐹𝐷) ↔ ((𝐹𝐶) ⊆ (𝐹𝐷) ∧ (𝐹𝐷) ⊆ (𝐹𝐶)))
6 eqss 3936 . 2 (𝐶 = 𝐷 ↔ (𝐶𝐷𝐷𝐶))
74, 5, 63bitr4g 314 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wss 3887  cima 5592  1-1wf1 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441
This theorem is referenced by:  f1imapss  7139  dfac12lem2  9900  hmeoimaf1o  22921  imasf1oxms  23645  isomuspgrlem2c  45282
  Copyright terms: Public domain W3C validator