![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fafvelcdm | Structured version Visualization version GIF version |
Description: A function's value belongs to its codomain, analogous to ffvelcdm 7084. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
fafvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6715 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnafvelrn 46584 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ ran 𝐹) | |
3 | 1, 2 | sylan 578 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ ran 𝐹) |
4 | frn 6722 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
5 | 4 | sseld 3971 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹'''𝐶) ∈ ran 𝐹 → (𝐹'''𝐶) ∈ 𝐵)) |
6 | 5 | adantr 479 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹'''𝐶) ∈ ran 𝐹 → (𝐹'''𝐶) ∈ 𝐵)) |
7 | 3, 6 | mpd 15 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ran crn 5671 Fn wfn 6536 ⟶wf 6537 '''cafv 46532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-br 5142 df-opab 5204 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-aiota 46500 df-dfat 46534 df-afv 46535 |
This theorem is referenced by: ffnafv 46586 |
Copyright terms: Public domain | W3C validator |