Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fafvelcdm Structured version   Visualization version   GIF version

Theorem fafvelcdm 47166
Description: A function's value belongs to its codomain, analogous to ffvelcdm 7076. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fafvelcdm ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹'''𝐶) ∈ 𝐵)

Proof of Theorem fafvelcdm
StepHypRef Expression
1 ffn 6711 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnafvelrn 47165 . . 3 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹'''𝐶) ∈ ran 𝐹)
31, 2sylan 580 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹'''𝐶) ∈ ran 𝐹)
4 frn 6718 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
54sseld 3962 . . 3 (𝐹:𝐴𝐵 → ((𝐹'''𝐶) ∈ ran 𝐹 → (𝐹'''𝐶) ∈ 𝐵))
65adantr 480 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹'''𝐶) ∈ ran 𝐹 → (𝐹'''𝐶) ∈ 𝐵))
73, 6mpd 15 1 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹'''𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ran crn 5660   Fn wfn 6531  wf 6532  '''cafv 47113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-aiota 47081  df-dfat 47115  df-afv 47116
This theorem is referenced by:  ffnafv  47167
  Copyright terms: Public domain W3C validator