| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fafvelcdm | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to its codomain, analogous to ffvelcdm 7015. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| fafvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6652 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnafvelrn 47163 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ ran 𝐹) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ ran 𝐹) |
| 4 | frn 6659 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 5 | 4 | sseld 3934 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹'''𝐶) ∈ ran 𝐹 → (𝐹'''𝐶) ∈ 𝐵)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹'''𝐶) ∈ ran 𝐹 → (𝐹'''𝐶) ∈ 𝐵)) |
| 7 | 3, 6 | mpd 15 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ran crn 5620 Fn wfn 6477 ⟶wf 6478 '''cafv 47111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-aiota 47079 df-dfat 47113 df-afv 47114 |
| This theorem is referenced by: ffnafv 47165 |
| Copyright terms: Public domain | W3C validator |