Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnafv Structured version   Visualization version   GIF version

Theorem ffnafv 46551
Description: A function maps to a class to which all values belong, analogous to ffnfv 7129. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
ffnafv (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffnafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 6722 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fafvelcdm 46550 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹'''𝑥) ∈ 𝐵)
32ralrimiva 3143 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵)
41, 3jca 511 . 2 (𝐹:𝐴𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
5 simpl 482 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴)
6 afvelrnb0 46544 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹'''𝑥) = 𝑦))
7 nfra1 3278 . . . . . 6 𝑥𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵
8 nfv 1910 . . . . . 6 𝑥 𝑦𝐵
9 rsp 3241 . . . . . . 7 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥𝐴 → (𝐹'''𝑥) ∈ 𝐵))
10 eleq1 2817 . . . . . . . 8 ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵𝑦𝐵))
1110biimpcd 248 . . . . . . 7 ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦𝑦𝐵))
129, 11syl6 35 . . . . . 6 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥𝐴 → ((𝐹'''𝑥) = 𝑦𝑦𝐵)))
137, 8, 12rexlimd 3260 . . . . 5 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥𝐴 (𝐹'''𝑥) = 𝑦𝑦𝐵))
146, 13sylan9 507 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹𝑦𝐵))
1514ssrdv 3986 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹𝐵)
16 df-f 6552 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
175, 15, 16sylanbrc 582 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴𝐵)
184, 17impbii 208 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3058  wrex 3067  wss 3947  ran crn 5679   Fn wfn 6543  wf 6544  '''cafv 46497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-aiota 46465  df-dfat 46499  df-afv 46500
This theorem is referenced by:  ffnaov  46579
  Copyright terms: Public domain W3C validator