![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnafv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong, analogous to ffnfv 7153. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
ffnafv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fafvelcdm 47085 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹'''𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3152 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | afvelrnb0 47079 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦)) | |
7 | nfra1 3290 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 | |
8 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
9 | rsp 3253 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹'''𝑥) ∈ 𝐵)) | |
10 | eleq1 2832 | . . . . . . . 8 ⊢ ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
11 | 10 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
12 | 9, 11 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
13 | 7, 8, 12 | rexlimd 3272 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
14 | 6, 13 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
15 | 14 | ssrdv 4014 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
16 | df-f 6577 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
17 | 5, 15, 16 | sylanbrc 582 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
18 | 4, 17 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 '''cafv 47032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-aiota 47000 df-dfat 47034 df-afv 47035 |
This theorem is referenced by: ffnaov 47114 |
Copyright terms: Public domain | W3C validator |