Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnafv Structured version   Visualization version   GIF version

Theorem ffnafv 47086
Description: A function maps to a class to which all values belong, analogous to ffnfv 7153. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
ffnafv (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffnafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 6747 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fafvelcdm 47085 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹'''𝑥) ∈ 𝐵)
32ralrimiva 3152 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵)
41, 3jca 511 . 2 (𝐹:𝐴𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
5 simpl 482 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴)
6 afvelrnb0 47079 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹'''𝑥) = 𝑦))
7 nfra1 3290 . . . . . 6 𝑥𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵
8 nfv 1913 . . . . . 6 𝑥 𝑦𝐵
9 rsp 3253 . . . . . . 7 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥𝐴 → (𝐹'''𝑥) ∈ 𝐵))
10 eleq1 2832 . . . . . . . 8 ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵𝑦𝐵))
1110biimpcd 249 . . . . . . 7 ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦𝑦𝐵))
129, 11syl6 35 . . . . . 6 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥𝐴 → ((𝐹'''𝑥) = 𝑦𝑦𝐵)))
137, 8, 12rexlimd 3272 . . . . 5 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥𝐴 (𝐹'''𝑥) = 𝑦𝑦𝐵))
146, 13sylan9 507 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹𝑦𝐵))
1514ssrdv 4014 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹𝐵)
16 df-f 6577 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
175, 15, 16sylanbrc 582 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴𝐵)
184, 17impbii 209 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  ran crn 5701   Fn wfn 6568  wf 6569  '''cafv 47032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-aiota 47000  df-dfat 47034  df-afv 47035
This theorem is referenced by:  ffnaov  47114
  Copyright terms: Public domain W3C validator