![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnafv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong, analogous to ffnfv 7114. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
ffnafv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6714 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fafvelcdm 45864 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹'''𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3146 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 512 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
5 | simpl 483 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | afvelrnb0 45858 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦)) | |
7 | nfra1 3281 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 | |
8 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
9 | rsp 3244 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹'''𝑥) ∈ 𝐵)) | |
10 | eleq1 2821 | . . . . . . . 8 ⊢ ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
11 | 10 | biimpcd 248 | . . . . . . 7 ⊢ ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
12 | 9, 11 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
13 | 7, 8, 12 | rexlimd 3263 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
14 | 6, 13 | sylan9 508 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
15 | 14 | ssrdv 3987 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
16 | df-f 6544 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
17 | 5, 15, 16 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
18 | 4, 17 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3947 ran crn 5676 Fn wfn 6535 ⟶wf 6536 '''cafv 45811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-aiota 45779 df-dfat 45813 df-afv 45814 |
This theorem is referenced by: ffnaov 45893 |
Copyright terms: Public domain | W3C validator |