Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnafv Structured version   Visualization version   GIF version

Theorem ffnafv 47176
Description: A function maps to a class to which all values belong, analogous to ffnfv 7094. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
ffnafv (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffnafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 6691 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fafvelcdm 47175 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹'''𝑥) ∈ 𝐵)
32ralrimiva 3126 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵)
41, 3jca 511 . 2 (𝐹:𝐴𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
5 simpl 482 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴)
6 afvelrnb0 47169 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹'''𝑥) = 𝑦))
7 nfra1 3262 . . . . . 6 𝑥𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵
8 nfv 1914 . . . . . 6 𝑥 𝑦𝐵
9 rsp 3226 . . . . . . 7 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥𝐴 → (𝐹'''𝑥) ∈ 𝐵))
10 eleq1 2817 . . . . . . . 8 ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵𝑦𝐵))
1110biimpcd 249 . . . . . . 7 ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦𝑦𝐵))
129, 11syl6 35 . . . . . 6 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥𝐴 → ((𝐹'''𝑥) = 𝑦𝑦𝐵)))
137, 8, 12rexlimd 3245 . . . . 5 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥𝐴 (𝐹'''𝑥) = 𝑦𝑦𝐵))
146, 13sylan9 507 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹𝑦𝐵))
1514ssrdv 3955 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹𝐵)
16 df-f 6518 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
175, 15, 16sylanbrc 583 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴𝐵)
184, 17impbii 209 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  ran crn 5642   Fn wfn 6509  wf 6510  '''cafv 47122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-aiota 47090  df-dfat 47124  df-afv 47125
This theorem is referenced by:  ffnaov  47204
  Copyright terms: Public domain W3C validator