![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnafv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong, analogous to ffnfv 7139. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
ffnafv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6737 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fafvelcdm 47120 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹'''𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3144 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | afvelrnb0 47114 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦)) | |
7 | nfra1 3282 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 | |
8 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
9 | rsp 3245 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹'''𝑥) ∈ 𝐵)) | |
10 | eleq1 2827 | . . . . . . . 8 ⊢ ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
11 | 10 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
12 | 9, 11 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
13 | 7, 8, 12 | rexlimd 3264 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
14 | 6, 13 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
15 | 14 | ssrdv 4001 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
16 | df-f 6567 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
17 | 5, 15, 16 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
18 | 4, 17 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ran crn 5690 Fn wfn 6558 ⟶wf 6559 '''cafv 47067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-aiota 47035 df-dfat 47069 df-afv 47070 |
This theorem is referenced by: ffnaov 47149 |
Copyright terms: Public domain | W3C validator |