![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnafv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong, analogous to ffnfv 7113. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
ffnafv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6710 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fafvelcdm 46431 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹'''𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3140 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | afvelrnb0 46425 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦)) | |
7 | nfra1 3275 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 | |
8 | nfv 1909 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
9 | rsp 3238 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹'''𝑥) ∈ 𝐵)) | |
10 | eleq1 2815 | . . . . . . . 8 ⊢ ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
11 | 10 | biimpcd 248 | . . . . . . 7 ⊢ ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
12 | 9, 11 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
13 | 7, 8, 12 | rexlimd 3257 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
14 | 6, 13 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
15 | 14 | ssrdv 3983 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
16 | df-f 6540 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
17 | 5, 15, 16 | sylanbrc 582 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
18 | 4, 17 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 ran crn 5670 Fn wfn 6531 ⟶wf 6532 '''cafv 46378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-aiota 46346 df-dfat 46380 df-afv 46381 |
This theorem is referenced by: ffnaov 46460 |
Copyright terms: Public domain | W3C validator |