Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnafv Structured version   Visualization version   GIF version

Theorem ffnafv 47121
Description: A function maps to a class to which all values belong, analogous to ffnfv 7139. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
ffnafv (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffnafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 6737 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fafvelcdm 47120 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹'''𝑥) ∈ 𝐵)
32ralrimiva 3144 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵)
41, 3jca 511 . 2 (𝐹:𝐴𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
5 simpl 482 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴)
6 afvelrnb0 47114 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹'''𝑥) = 𝑦))
7 nfra1 3282 . . . . . 6 𝑥𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵
8 nfv 1912 . . . . . 6 𝑥 𝑦𝐵
9 rsp 3245 . . . . . . 7 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥𝐴 → (𝐹'''𝑥) ∈ 𝐵))
10 eleq1 2827 . . . . . . . 8 ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵𝑦𝐵))
1110biimpcd 249 . . . . . . 7 ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦𝑦𝐵))
129, 11syl6 35 . . . . . 6 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥𝐴 → ((𝐹'''𝑥) = 𝑦𝑦𝐵)))
137, 8, 12rexlimd 3264 . . . . 5 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥𝐴 (𝐹'''𝑥) = 𝑦𝑦𝐵))
146, 13sylan9 507 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹𝑦𝐵))
1514ssrdv 4001 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹𝐵)
16 df-f 6567 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
175, 15, 16sylanbrc 583 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴𝐵)
184, 17impbii 209 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963  ran crn 5690   Fn wfn 6558  wf 6559  '''cafv 47067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-aiota 47035  df-dfat 47069  df-afv 47070
This theorem is referenced by:  ffnaov  47149
  Copyright terms: Public domain W3C validator