![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnafv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong, analogous to ffnfv 6750. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
ffnafv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6387 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fafvelrn 42912 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹'''𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3149 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 512 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
5 | simpl 483 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | afvelrnb0 42906 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦)) | |
7 | nfra1 3186 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 | |
8 | nfv 1892 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
9 | rsp 3172 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹'''𝑥) ∈ 𝐵)) | |
10 | eleq1 2870 | . . . . . . . 8 ⊢ ((𝐹'''𝑥) = 𝑦 → ((𝐹'''𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
11 | 10 | biimpcd 250 | . . . . . . 7 ⊢ ((𝐹'''𝑥) ∈ 𝐵 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
12 | 9, 11 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
13 | 7, 8, 12 | rexlimd 3278 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
14 | 6, 13 | sylan9 508 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
15 | 14 | ssrdv 3899 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
16 | df-f 6234 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
17 | 5, 15, 16 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
18 | 4, 17 | impbii 210 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 ∃wrex 3106 ⊆ wss 3863 ran crn 5449 Fn wfn 6225 ⟶wf 6226 '''cafv 42859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-int 4787 df-br 4967 df-opab 5029 df-mpt 5046 df-id 5353 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-fv 6238 df-aiota 42828 df-dfat 42861 df-afv 42862 |
This theorem is referenced by: ffnaov 42941 |
Copyright terms: Public domain | W3C validator |