MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1oinvd Structured version   Visualization version   GIF version

Theorem fcof1oinvd 7329
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o 7332. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1oinvd.f (𝜑𝐹:𝐴1-1-onto𝐵)
fcof1oinvd.g (𝜑𝐺:𝐵𝐴)
fcof1oinvd.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
fcof1oinvd (𝜑𝐹 = 𝐺)

Proof of Theorem fcof1oinvd
StepHypRef Expression
1 fcof1oinvd.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
21coeq2d 5887 . 2 (𝜑 → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
3 coass 6296 . . 3 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
4 fcof1oinvd.f . . . . . 6 (𝜑𝐹:𝐴1-1-onto𝐵)
5 f1ococnv1 6891 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
64, 5syl 17 . . . . 5 (𝜑 → (𝐹𝐹) = ( I ↾ 𝐴))
76coeq1d 5886 . . . 4 (𝜑 → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
8 fcof1oinvd.g . . . . 5 (𝜑𝐺:𝐵𝐴)
9 fcoi2 6796 . . . . 5 (𝐺:𝐵𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
108, 9syl 17 . . . 4 (𝜑 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
117, 10eqtrd 2780 . . 3 (𝜑 → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
123, 11eqtr3id 2794 . 2 (𝜑 → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
13 f1ocnv 6874 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
14 f1of 6862 . . 3 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
15 fcoi1 6795 . . 3 (𝐹:𝐵𝐴 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
164, 13, 14, 154syl 19 . 2 (𝜑 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
172, 12, 163eqtr3rd 2789 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   I cid 5592  ccnv 5699  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  2fcoidinvd  7331
  Copyright terms: Public domain W3C validator