![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcof1oinvd | Structured version Visualization version GIF version |
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o 7332. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
fcof1oinvd.f | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
fcof1oinvd.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
fcof1oinvd.b | ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
fcof1oinvd | ⊢ (𝜑 → ◡𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1oinvd.b | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) | |
2 | 1 | coeq2d 5887 | . 2 ⊢ (𝜑 → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = (◡𝐹 ∘ ( I ↾ 𝐵))) |
3 | coass 6296 | . . 3 ⊢ ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (◡𝐹 ∘ (𝐹 ∘ 𝐺)) | |
4 | fcof1oinvd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
5 | f1ococnv1 6891 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
7 | 6 | coeq1d 5886 | . . . 4 ⊢ (𝜑 → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺)) |
8 | fcof1oinvd.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
9 | fcoi2 6796 | . . . . 5 ⊢ (𝐺:𝐵⟶𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
11 | 7, 10 | eqtrd 2780 | . . 3 ⊢ (𝜑 → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = 𝐺) |
12 | 3, 11 | eqtr3id 2794 | . 2 ⊢ (𝜑 → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = 𝐺) |
13 | f1ocnv 6874 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
14 | f1of 6862 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
15 | fcoi1 6795 | . . 3 ⊢ (◡𝐹:𝐵⟶𝐴 → (◡𝐹 ∘ ( I ↾ 𝐵)) = ◡𝐹) | |
16 | 4, 13, 14, 15 | 4syl 19 | . 2 ⊢ (𝜑 → (◡𝐹 ∘ ( I ↾ 𝐵)) = ◡𝐹) |
17 | 2, 12, 16 | 3eqtr3rd 2789 | 1 ⊢ (𝜑 → ◡𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 I cid 5592 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6569 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: 2fcoidinvd 7331 |
Copyright terms: Public domain | W3C validator |