Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcof1oinvd | Structured version Visualization version GIF version |
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o 7218. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
fcof1oinvd.f | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
fcof1oinvd.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
fcof1oinvd.b | ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
fcof1oinvd | ⊢ (𝜑 → ◡𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1oinvd.b | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) | |
2 | 1 | coeq2d 5798 | . 2 ⊢ (𝜑 → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = (◡𝐹 ∘ ( I ↾ 𝐵))) |
3 | coass 6197 | . . 3 ⊢ ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (◡𝐹 ∘ (𝐹 ∘ 𝐺)) | |
4 | fcof1oinvd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
5 | f1ococnv1 6790 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
7 | 6 | coeq1d 5797 | . . . 4 ⊢ (𝜑 → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺)) |
8 | fcof1oinvd.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
9 | fcoi2 6694 | . . . . 5 ⊢ (𝐺:𝐵⟶𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
11 | 7, 10 | eqtrd 2776 | . . 3 ⊢ (𝜑 → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = 𝐺) |
12 | 3, 11 | eqtr3id 2790 | . 2 ⊢ (𝜑 → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = 𝐺) |
13 | f1ocnv 6773 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
14 | 4, 13 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝐹:𝐵–1-1-onto→𝐴) |
15 | f1of 6761 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → ◡𝐹:𝐵⟶𝐴) |
17 | fcoi1 6693 | . . 3 ⊢ (◡𝐹:𝐵⟶𝐴 → (◡𝐹 ∘ ( I ↾ 𝐵)) = ◡𝐹) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 ∘ ( I ↾ 𝐵)) = ◡𝐹) |
19 | 2, 12, 18 | 3eqtr3rd 2785 | 1 ⊢ (𝜑 → ◡𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 I cid 5511 ◡ccnv 5613 ↾ cres 5616 ∘ ccom 5618 ⟶wf 6469 –1-1-onto→wf1o 6472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 |
This theorem is referenced by: 2fcoidinvd 7217 |
Copyright terms: Public domain | W3C validator |