MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1oinvd Structured version   Visualization version   GIF version

Theorem fcof1oinvd 7215
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o 7218. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1oinvd.f (𝜑𝐹:𝐴1-1-onto𝐵)
fcof1oinvd.g (𝜑𝐺:𝐵𝐴)
fcof1oinvd.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
fcof1oinvd (𝜑𝐹 = 𝐺)

Proof of Theorem fcof1oinvd
StepHypRef Expression
1 fcof1oinvd.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
21coeq2d 5798 . 2 (𝜑 → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
3 coass 6197 . . 3 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
4 fcof1oinvd.f . . . . . 6 (𝜑𝐹:𝐴1-1-onto𝐵)
5 f1ococnv1 6790 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
64, 5syl 17 . . . . 5 (𝜑 → (𝐹𝐹) = ( I ↾ 𝐴))
76coeq1d 5797 . . . 4 (𝜑 → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
8 fcof1oinvd.g . . . . 5 (𝜑𝐺:𝐵𝐴)
9 fcoi2 6694 . . . . 5 (𝐺:𝐵𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
108, 9syl 17 . . . 4 (𝜑 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
117, 10eqtrd 2776 . . 3 (𝜑 → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
123, 11eqtr3id 2790 . 2 (𝜑 → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
13 f1ocnv 6773 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
144, 13syl 17 . . . 4 (𝜑𝐹:𝐵1-1-onto𝐴)
15 f1of 6761 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
1614, 15syl 17 . . 3 (𝜑𝐹:𝐵𝐴)
17 fcoi1 6693 . . 3 (𝐹:𝐵𝐴 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
1816, 17syl 17 . 2 (𝜑 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
192, 12, 183eqtr3rd 2785 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   I cid 5511  ccnv 5613  cres 5616  ccom 5618  wf 6469  1-1-ontowf1o 6472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480
This theorem is referenced by:  2fcoidinvd  7217
  Copyright terms: Public domain W3C validator