![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcof1od | Structured version Visualization version GIF version |
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 7323 and fcofo 7324. Formerly part of proof of fcof1o 7332. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
fcof1od.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcof1od.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
fcof1od.a | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
fcof1od.b | ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
fcof1od | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1od.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcof1od.a | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) | |
3 | fcof1 7323 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
5 | fcof1od.g | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
6 | fcof1od.b | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) | |
7 | fcofo 7324 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) | |
8 | 1, 5, 6, 7 | syl3anc 1371 | . 2 ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
9 | df-f1o 6580 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
10 | 4, 8, 9 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 I cid 5592 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6569 –1-1→wf1 6570 –onto→wfo 6571 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: 2fcoidinvd 7331 fcof1o 7332 2fvidf1od 7334 catciso 18178 pmtrff1o 19505 evpmodpmf1o 21637 |
Copyright terms: Public domain | W3C validator |