MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1od Structured version   Visualization version   GIF version

Theorem fcof1od 7307
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 7300 and fcofo 7301. Formerly part of proof of fcof1o 7309. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1od.f (𝜑𝐹:𝐴𝐵)
fcof1od.g (𝜑𝐺:𝐵𝐴)
fcof1od.a (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
fcof1od.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
fcof1od (𝜑𝐹:𝐴1-1-onto𝐵)

Proof of Theorem fcof1od
StepHypRef Expression
1 fcof1od.f . . 3 (𝜑𝐹:𝐴𝐵)
2 fcof1od.a . . 3 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
3 fcof1 7300 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐺𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
41, 2, 3syl2anc 582 . 2 (𝜑𝐹:𝐴1-1𝐵)
5 fcof1od.g . . 3 (𝜑𝐺:𝐵𝐴)
6 fcof1od.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
7 fcofo 7301 . . 3 ((𝐹:𝐴𝐵𝐺:𝐵𝐴 ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
81, 5, 6, 7syl3anc 1368 . 2 (𝜑𝐹:𝐴onto𝐵)
9 df-f1o 6558 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
104, 8, 9sylanbrc 581 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533   I cid 5577  cres 5682  ccom 5684  wf 6547  1-1wf1 6548  ontowfo 6549  1-1-ontowf1o 6550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559
This theorem is referenced by:  2fcoidinvd  7308  fcof1o  7309  2fvidf1od  7311  catciso  18105  pmtrff1o  19423  evpmodpmf1o  21533
  Copyright terms: Public domain W3C validator