![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcof1od | Structured version Visualization version GIF version |
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 7300 and fcofo 7301. Formerly part of proof of fcof1o 7309. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
fcof1od.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcof1od.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
fcof1od.a | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
fcof1od.b | ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
fcof1od | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1od.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcof1od.a | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) | |
3 | fcof1 7300 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) | |
4 | 1, 2, 3 | syl2anc 582 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
5 | fcof1od.g | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
6 | fcof1od.b | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) | |
7 | fcofo 7301 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) | |
8 | 1, 5, 6, 7 | syl3anc 1368 | . 2 ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
9 | df-f1o 6558 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
10 | 4, 8, 9 | sylanbrc 581 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 I cid 5577 ↾ cres 5682 ∘ ccom 5684 ⟶wf 6547 –1-1→wf1 6548 –onto→wfo 6549 –1-1-onto→wf1o 6550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 |
This theorem is referenced by: 2fcoidinvd 7308 fcof1o 7309 2fvidf1od 7311 catciso 18105 pmtrff1o 19423 evpmodpmf1o 21533 |
Copyright terms: Public domain | W3C validator |