| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcof1od | Structured version Visualization version GIF version | ||
| Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 7221 and fcofo 7222. Formerly part of proof of fcof1o 7230. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| fcof1od.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcof1od.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| fcof1od.a | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
| fcof1od.b | ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| fcof1od | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcof1od.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fcof1od.a | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) | |
| 3 | fcof1 7221 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
| 5 | fcof1od.g | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
| 6 | fcof1od.b | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) | |
| 7 | fcofo 7222 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) | |
| 8 | 1, 5, 6, 7 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
| 9 | df-f1o 6488 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 10 | 4, 8, 9 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 I cid 5510 ↾ cres 5618 ∘ ccom 5620 ⟶wf 6477 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: 2fcoidinvd 7229 fcof1o 7230 2fvidf1od 7232 catciso 18015 pmtrff1o 19373 evpmodpmf1o 21531 |
| Copyright terms: Public domain | W3C validator |