Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcof1od | Structured version Visualization version GIF version |
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 7036 and fcofo 7037. Formerly part of proof of fcof1o 7045. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
fcof1od.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcof1od.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
fcof1od.a | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
fcof1od.b | ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
fcof1od | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1od.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcof1od.a | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) | |
3 | fcof1 7036 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) | |
4 | 1, 2, 3 | syl2anc 588 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
5 | fcof1od.g | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
6 | fcof1od.b | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) | |
7 | fcofo 7037 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) | |
8 | 1, 5, 6, 7 | syl3anc 1369 | . 2 ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
9 | df-f1o 6343 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
10 | 4, 8, 9 | sylanbrc 587 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 I cid 5430 ↾ cres 5527 ∘ ccom 5529 ⟶wf 6332 –1-1→wf1 6333 –onto→wfo 6334 –1-1-onto→wf1o 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 |
This theorem is referenced by: 2fcoidinvd 7044 fcof1o 7045 2fvidf1od 7047 catciso 17434 pmtrff1o 18659 evpmodpmf1o 20362 |
Copyright terms: Public domain | W3C validator |