MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1od Structured version   Visualization version   GIF version

Theorem fcof1od 7330
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 7323 and fcofo 7324. Formerly part of proof of fcof1o 7332. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1od.f (𝜑𝐹:𝐴𝐵)
fcof1od.g (𝜑𝐺:𝐵𝐴)
fcof1od.a (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
fcof1od.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
fcof1od (𝜑𝐹:𝐴1-1-onto𝐵)

Proof of Theorem fcof1od
StepHypRef Expression
1 fcof1od.f . . 3 (𝜑𝐹:𝐴𝐵)
2 fcof1od.a . . 3 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
3 fcof1 7323 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐺𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
41, 2, 3syl2anc 583 . 2 (𝜑𝐹:𝐴1-1𝐵)
5 fcof1od.g . . 3 (𝜑𝐺:𝐵𝐴)
6 fcof1od.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
7 fcofo 7324 . . 3 ((𝐹:𝐴𝐵𝐺:𝐵𝐴 ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
81, 5, 6, 7syl3anc 1371 . 2 (𝜑𝐹:𝐴onto𝐵)
9 df-f1o 6580 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
104, 8, 9sylanbrc 582 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   I cid 5592  cres 5702  ccom 5704  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  2fcoidinvd  7331  fcof1o  7332  2fvidf1od  7334  catciso  18178  pmtrff1o  19505  evpmodpmf1o  21637
  Copyright terms: Public domain W3C validator