| Step | Hyp | Ref
| Expression |
| 1 | | fof 6820 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 2 | 1 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → 𝐹:𝐴⟶𝐵) |
| 3 | | fvco3 7008 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑦) = (𝐻‘(𝐹‘𝑦))) |
| 4 | 2, 3 | sylan 580 |
. . . . 5
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) ∧ 𝑦 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑦) = (𝐻‘(𝐹‘𝑦))) |
| 5 | | fvco3 7008 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝐾 ∘ 𝐹)‘𝑦) = (𝐾‘(𝐹‘𝑦))) |
| 6 | 2, 5 | sylan 580 |
. . . . 5
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) ∧ 𝑦 ∈ 𝐴) → ((𝐾 ∘ 𝐹)‘𝑦) = (𝐾‘(𝐹‘𝑦))) |
| 7 | 4, 6 | eqeq12d 2753 |
. . . 4
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) ∧ 𝑦 ∈ 𝐴) → (((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦) ↔ (𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)))) |
| 8 | 7 | ralbidva 3176 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (∀𝑦 ∈ 𝐴 ((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)))) |
| 9 | | fveq2 6906 |
. . . . . 6
⊢ ((𝐹‘𝑦) = 𝑥 → (𝐻‘(𝐹‘𝑦)) = (𝐻‘𝑥)) |
| 10 | | fveq2 6906 |
. . . . . 6
⊢ ((𝐹‘𝑦) = 𝑥 → (𝐾‘(𝐹‘𝑦)) = (𝐾‘𝑥)) |
| 11 | 9, 10 | eqeq12d 2753 |
. . . . 5
⊢ ((𝐹‘𝑦) = 𝑥 → ((𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 12 | 11 | cbvfo 7309 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ 𝐴 (𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 13 | 12 | 3ad2ant1 1134 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (∀𝑦 ∈ 𝐴 (𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 14 | 8, 13 | bitrd 279 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (∀𝑦 ∈ 𝐴 ((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦) ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 15 | | simp2 1138 |
. . . 4
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → 𝐻 Fn 𝐵) |
| 16 | | fnfco 6773 |
. . . 4
⊢ ((𝐻 Fn 𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐻 ∘ 𝐹) Fn 𝐴) |
| 17 | 15, 2, 16 | syl2anc 584 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (𝐻 ∘ 𝐹) Fn 𝐴) |
| 18 | | simp3 1139 |
. . . 4
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → 𝐾 Fn 𝐵) |
| 19 | | fnfco 6773 |
. . . 4
⊢ ((𝐾 Fn 𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐾 ∘ 𝐹) Fn 𝐴) |
| 20 | 18, 2, 19 | syl2anc 584 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (𝐾 ∘ 𝐹) Fn 𝐴) |
| 21 | | eqfnfv 7051 |
. . 3
⊢ (((𝐻 ∘ 𝐹) Fn 𝐴 ∧ (𝐾 ∘ 𝐹) Fn 𝐴) → ((𝐻 ∘ 𝐹) = (𝐾 ∘ 𝐹) ↔ ∀𝑦 ∈ 𝐴 ((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦))) |
| 22 | 17, 20, 21 | syl2anc 584 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → ((𝐻 ∘ 𝐹) = (𝐾 ∘ 𝐹) ↔ ∀𝑦 ∈ 𝐴 ((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦))) |
| 23 | | eqfnfv 7051 |
. . 3
⊢ ((𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 24 | 15, 18, 23 | syl2anc 584 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 25 | 14, 22, 24 | 3bitr4d 311 |
1
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → ((𝐻 ∘ 𝐹) = (𝐾 ∘ 𝐹) ↔ 𝐻 = 𝐾)) |