MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocan2 Structured version   Visualization version   GIF version

Theorem cocan2 7026
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))

Proof of Theorem cocan2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6565 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
213ad2ant1 1130 . . . . . 6 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐹:𝐴𝐵)
3 fvco3 6737 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
42, 3sylan 583 . . . . 5 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
5 fvco3 6737 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐾𝐹)‘𝑦) = (𝐾‘(𝐹𝑦)))
62, 5sylan 583 . . . . 5 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → ((𝐾𝐹)‘𝑦) = (𝐾‘(𝐹𝑦)))
74, 6eqeq12d 2814 . . . 4 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → (((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦))))
87ralbidva 3161 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ ∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦))))
9 fveq2 6645 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐻‘(𝐹𝑦)) = (𝐻𝑥))
10 fveq2 6645 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐾‘(𝐹𝑦)) = (𝐾𝑥))
119, 10eqeq12d 2814 . . . . 5 ((𝐹𝑦) = 𝑥 → ((𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ (𝐻𝑥) = (𝐾𝑥)))
1211cbvfo 7023 . . . 4 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
13123ad2ant1 1130 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
148, 13bitrd 282 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
15 simp2 1134 . . . 4 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐻 Fn 𝐵)
16 fnfco 6517 . . . 4 ((𝐻 Fn 𝐵𝐹:𝐴𝐵) → (𝐻𝐹) Fn 𝐴)
1715, 2, 16syl2anc 587 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻𝐹) Fn 𝐴)
18 simp3 1135 . . . 4 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐾 Fn 𝐵)
19 fnfco 6517 . . . 4 ((𝐾 Fn 𝐵𝐹:𝐴𝐵) → (𝐾𝐹) Fn 𝐴)
2018, 2, 19syl2anc 587 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐾𝐹) Fn 𝐴)
21 eqfnfv 6779 . . 3 (((𝐻𝐹) Fn 𝐴 ∧ (𝐾𝐹) Fn 𝐴) → ((𝐻𝐹) = (𝐾𝐹) ↔ ∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦)))
2217, 20, 21syl2anc 587 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ ∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦)))
23 eqfnfv 6779 . . 3 ((𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
2415, 18, 23syl2anc 587 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
2514, 22, 243bitr4d 314 1 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  ccom 5523   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332
This theorem is referenced by:  mapen  8665  mapfien  8855  hashfacen  13808  setcepi  17340  qtopeu  22321  qtophmeo  22422  fmptco1f1o  30392  derangenlem  32531
  Copyright terms: Public domain W3C validator