MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocan2 Structured version   Visualization version   GIF version

Theorem cocan2 7312
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))

Proof of Theorem cocan2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6821 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
213ad2ant1 1132 . . . . . 6 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐹:𝐴𝐵)
3 fvco3 7008 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
42, 3sylan 580 . . . . 5 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
5 fvco3 7008 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐾𝐹)‘𝑦) = (𝐾‘(𝐹𝑦)))
62, 5sylan 580 . . . . 5 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → ((𝐾𝐹)‘𝑦) = (𝐾‘(𝐹𝑦)))
74, 6eqeq12d 2751 . . . 4 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → (((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦))))
87ralbidva 3174 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ ∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦))))
9 fveq2 6907 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐻‘(𝐹𝑦)) = (𝐻𝑥))
10 fveq2 6907 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐾‘(𝐹𝑦)) = (𝐾𝑥))
119, 10eqeq12d 2751 . . . . 5 ((𝐹𝑦) = 𝑥 → ((𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ (𝐻𝑥) = (𝐾𝑥)))
1211cbvfo 7309 . . . 4 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
13123ad2ant1 1132 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
148, 13bitrd 279 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
15 simp2 1136 . . . 4 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐻 Fn 𝐵)
16 fnfco 6774 . . . 4 ((𝐻 Fn 𝐵𝐹:𝐴𝐵) → (𝐻𝐹) Fn 𝐴)
1715, 2, 16syl2anc 584 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻𝐹) Fn 𝐴)
18 simp3 1137 . . . 4 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐾 Fn 𝐵)
19 fnfco 6774 . . . 4 ((𝐾 Fn 𝐵𝐹:𝐴𝐵) → (𝐾𝐹) Fn 𝐴)
2018, 2, 19syl2anc 584 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐾𝐹) Fn 𝐴)
21 eqfnfv 7051 . . 3 (((𝐻𝐹) Fn 𝐴 ∧ (𝐾𝐹) Fn 𝐴) → ((𝐻𝐹) = (𝐾𝐹) ↔ ∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦)))
2217, 20, 21syl2anc 584 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ ∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦)))
23 eqfnfv 7051 . . 3 ((𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
2415, 18, 23syl2anc 584 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
2514, 22, 243bitr4d 311 1 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  ccom 5693   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571
This theorem is referenced by:  mapen  9180  mapfien  9446  hashfacen  14490  setcepi  18142  qtopeu  23740  qtophmeo  23841  fmptco1f1o  32650  1arithidomlem2  33544  derangenlem  35156
  Copyright terms: Public domain W3C validator