MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocan2 Structured version   Visualization version   GIF version

Theorem cocan2 7290
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))

Proof of Theorem cocan2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6806 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
213ad2ant1 1134 . . . . . 6 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐹:𝐴𝐵)
3 fvco3 6991 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
42, 3sylan 581 . . . . 5 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
5 fvco3 6991 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐾𝐹)‘𝑦) = (𝐾‘(𝐹𝑦)))
62, 5sylan 581 . . . . 5 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → ((𝐾𝐹)‘𝑦) = (𝐾‘(𝐹𝑦)))
74, 6eqeq12d 2749 . . . 4 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → (((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦))))
87ralbidva 3176 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ ∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦))))
9 fveq2 6892 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐻‘(𝐹𝑦)) = (𝐻𝑥))
10 fveq2 6892 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐾‘(𝐹𝑦)) = (𝐾𝑥))
119, 10eqeq12d 2749 . . . . 5 ((𝐹𝑦) = 𝑥 → ((𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ (𝐻𝑥) = (𝐾𝑥)))
1211cbvfo 7287 . . . 4 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
13123ad2ant1 1134 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
148, 13bitrd 279 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
15 simp2 1138 . . . 4 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐻 Fn 𝐵)
16 fnfco 6757 . . . 4 ((𝐻 Fn 𝐵𝐹:𝐴𝐵) → (𝐻𝐹) Fn 𝐴)
1715, 2, 16syl2anc 585 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻𝐹) Fn 𝐴)
18 simp3 1139 . . . 4 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐾 Fn 𝐵)
19 fnfco 6757 . . . 4 ((𝐾 Fn 𝐵𝐹:𝐴𝐵) → (𝐾𝐹) Fn 𝐴)
2018, 2, 19syl2anc 585 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐾𝐹) Fn 𝐴)
21 eqfnfv 7033 . . 3 (((𝐻𝐹) Fn 𝐴 ∧ (𝐾𝐹) Fn 𝐴) → ((𝐻𝐹) = (𝐾𝐹) ↔ ∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦)))
2217, 20, 21syl2anc 585 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ ∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦)))
23 eqfnfv 7033 . . 3 ((𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
2415, 18, 23syl2anc 585 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
2514, 22, 243bitr4d 311 1 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  ccom 5681   Fn wfn 6539  wf 6540  ontowfo 6542  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552
This theorem is referenced by:  mapen  9141  mapfien  9403  hashfacen  14413  hashfacenOLD  14414  setcepi  18038  qtopeu  23220  qtophmeo  23321  fmptco1f1o  31857  derangenlem  34162
  Copyright terms: Public domain W3C validator