Step | Hyp | Ref
| Expression |
1 | | fof 6672 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
2 | 1 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → 𝐹:𝐴⟶𝐵) |
3 | | fvco3 6849 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑦) = (𝐻‘(𝐹‘𝑦))) |
4 | 2, 3 | sylan 579 |
. . . . 5
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) ∧ 𝑦 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑦) = (𝐻‘(𝐹‘𝑦))) |
5 | | fvco3 6849 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝐾 ∘ 𝐹)‘𝑦) = (𝐾‘(𝐹‘𝑦))) |
6 | 2, 5 | sylan 579 |
. . . . 5
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) ∧ 𝑦 ∈ 𝐴) → ((𝐾 ∘ 𝐹)‘𝑦) = (𝐾‘(𝐹‘𝑦))) |
7 | 4, 6 | eqeq12d 2754 |
. . . 4
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) ∧ 𝑦 ∈ 𝐴) → (((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦) ↔ (𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)))) |
8 | 7 | ralbidva 3119 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (∀𝑦 ∈ 𝐴 ((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)))) |
9 | | fveq2 6756 |
. . . . . 6
⊢ ((𝐹‘𝑦) = 𝑥 → (𝐻‘(𝐹‘𝑦)) = (𝐻‘𝑥)) |
10 | | fveq2 6756 |
. . . . . 6
⊢ ((𝐹‘𝑦) = 𝑥 → (𝐾‘(𝐹‘𝑦)) = (𝐾‘𝑥)) |
11 | 9, 10 | eqeq12d 2754 |
. . . . 5
⊢ ((𝐹‘𝑦) = 𝑥 → ((𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) |
12 | 11 | cbvfo 7141 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ 𝐴 (𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
13 | 12 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (∀𝑦 ∈ 𝐴 (𝐻‘(𝐹‘𝑦)) = (𝐾‘(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
14 | 8, 13 | bitrd 278 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (∀𝑦 ∈ 𝐴 ((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦) ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
15 | | simp2 1135 |
. . . 4
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → 𝐻 Fn 𝐵) |
16 | | fnfco 6623 |
. . . 4
⊢ ((𝐻 Fn 𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐻 ∘ 𝐹) Fn 𝐴) |
17 | 15, 2, 16 | syl2anc 583 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (𝐻 ∘ 𝐹) Fn 𝐴) |
18 | | simp3 1136 |
. . . 4
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → 𝐾 Fn 𝐵) |
19 | | fnfco 6623 |
. . . 4
⊢ ((𝐾 Fn 𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐾 ∘ 𝐹) Fn 𝐴) |
20 | 18, 2, 19 | syl2anc 583 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (𝐾 ∘ 𝐹) Fn 𝐴) |
21 | | eqfnfv 6891 |
. . 3
⊢ (((𝐻 ∘ 𝐹) Fn 𝐴 ∧ (𝐾 ∘ 𝐹) Fn 𝐴) → ((𝐻 ∘ 𝐹) = (𝐾 ∘ 𝐹) ↔ ∀𝑦 ∈ 𝐴 ((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦))) |
22 | 17, 20, 21 | syl2anc 583 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → ((𝐻 ∘ 𝐹) = (𝐾 ∘ 𝐹) ↔ ∀𝑦 ∈ 𝐴 ((𝐻 ∘ 𝐹)‘𝑦) = ((𝐾 ∘ 𝐹)‘𝑦))) |
23 | | eqfnfv 6891 |
. . 3
⊢ ((𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
24 | 15, 18, 23 | syl2anc 583 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐵 (𝐻‘𝑥) = (𝐾‘𝑥))) |
25 | 14, 22, 24 | 3bitr4d 310 |
1
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵) → ((𝐻 ∘ 𝐹) = (𝐾 ∘ 𝐹) ↔ 𝐻 = 𝐾)) |