MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fcoidinvd Structured version   Visualization version   GIF version

Theorem 2fcoidinvd 7316
Description: Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1od.f (𝜑𝐹:𝐴𝐵)
fcof1od.g (𝜑𝐺:𝐵𝐴)
fcof1od.a (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
fcof1od.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
2fcoidinvd (𝜑𝐹 = 𝐺)

Proof of Theorem 2fcoidinvd
StepHypRef Expression
1 fcof1od.f . . 3 (𝜑𝐹:𝐴𝐵)
2 fcof1od.g . . 3 (𝜑𝐺:𝐵𝐴)
3 fcof1od.a . . 3 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
4 fcof1od.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
51, 2, 3, 4fcof1od 7315 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
65, 2, 4fcof1oinvd 7314 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   I cid 5576  ccnv 5683  cres 5686  ccom 5688  wf 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568
This theorem is referenced by:  fcof1o  7317  2fvidinvd  7320  pmtrfcnv  19483  qtophmeo  23826  fsovcnvd  44032
  Copyright terms: Public domain W3C validator