MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fcoidinvd Structured version   Visualization version   GIF version

Theorem 2fcoidinvd 7167
Description: Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1od.f (𝜑𝐹:𝐴𝐵)
fcof1od.g (𝜑𝐺:𝐵𝐴)
fcof1od.a (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
fcof1od.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
2fcoidinvd (𝜑𝐹 = 𝐺)

Proof of Theorem 2fcoidinvd
StepHypRef Expression
1 fcof1od.f . . 3 (𝜑𝐹:𝐴𝐵)
2 fcof1od.g . . 3 (𝜑𝐺:𝐵𝐴)
3 fcof1od.a . . 3 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
4 fcof1od.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
51, 2, 3, 4fcof1od 7166 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
65, 2, 4fcof1oinvd 7165 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   I cid 5488  ccnv 5588  cres 5591  ccom 5593  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  fcof1o  7168  2fvidinvd  7171  pmtrfcnv  19072  qtophmeo  22968  fsovcnvd  41622
  Copyright terms: Public domain W3C validator