MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fcoidinvd Structured version   Visualization version   GIF version

Theorem 2fcoidinvd 7048
Description: Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1od.f (𝜑𝐹:𝐴𝐵)
fcof1od.g (𝜑𝐺:𝐵𝐴)
fcof1od.a (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
fcof1od.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
2fcoidinvd (𝜑𝐹 = 𝐺)

Proof of Theorem 2fcoidinvd
StepHypRef Expression
1 fcof1od.f . . 3 (𝜑𝐹:𝐴𝐵)
2 fcof1od.g . . 3 (𝜑𝐺:𝐵𝐴)
3 fcof1od.a . . 3 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
4 fcof1od.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
51, 2, 3, 4fcof1od 7047 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
65, 2, 4fcof1oinvd 7046 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538   I cid 5432  ccnv 5526  cres 5529  ccom 5531  wf 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347
This theorem is referenced by:  fcof1o  7049  2fvidinvd  7052  pmtrfcnv  18664  qtophmeo  22522  fsovcnvd  41116
  Copyright terms: Public domain W3C validator