MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fcoidinvd Structured version   Visualization version   GIF version

Theorem 2fcoidinvd 7235
Description: Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1od.f (𝜑𝐹:𝐴𝐵)
fcof1od.g (𝜑𝐺:𝐵𝐴)
fcof1od.a (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
fcof1od.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
2fcoidinvd (𝜑𝐹 = 𝐺)

Proof of Theorem 2fcoidinvd
StepHypRef Expression
1 fcof1od.f . . 3 (𝜑𝐹:𝐴𝐵)
2 fcof1od.g . . 3 (𝜑𝐺:𝐵𝐴)
3 fcof1od.a . . 3 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
4 fcof1od.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
51, 2, 3, 4fcof1od 7234 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
65, 2, 4fcof1oinvd 7233 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   I cid 5513  ccnv 5618  cres 5621  ccom 5623  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  fcof1o  7236  2fvidinvd  7239  pmtrfcnv  19378  qtophmeo  23733  fsovcnvd  44131
  Copyright terms: Public domain W3C validator