MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst4 Structured version   Visualization version   GIF version

Theorem fconst4 7154
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
fconst4 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))

Proof of Theorem fconst4
StepHypRef Expression
1 fconst3 7153 . 2 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
2 cnvimass 6035 . . . . . 6 (𝐹 “ {𝐵}) ⊆ dom 𝐹
3 fndm 6589 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
42, 3sseqtrid 3973 . . . . 5 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) ⊆ 𝐴)
54biantrurd 532 . . . 4 (𝐹 Fn 𝐴 → (𝐴 ⊆ (𝐹 “ {𝐵}) ↔ ((𝐹 “ {𝐵}) ⊆ 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
6 eqss 3946 . . . 4 ((𝐹 “ {𝐵}) = 𝐴 ↔ ((𝐹 “ {𝐵}) ⊆ 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
75, 6bitr4di 289 . . 3 (𝐹 Fn 𝐴 → (𝐴 ⊆ (𝐹 “ {𝐵}) ↔ (𝐹 “ {𝐵}) = 𝐴))
87pm5.32i 574 . 2 ((𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))
91, 8bitri 275 1 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wss 3898  {csn 4575  ccnv 5618  dom cdm 5619  cima 5622   Fn wfn 6481  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  lkr0f  39213
  Copyright terms: Public domain W3C validator