![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst4 | Structured version Visualization version GIF version |
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.) |
Ref | Expression |
---|---|
fconst4 | ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst3 7209 | . 2 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
2 | cnvimass 6073 | . . . . . 6 ⊢ (◡𝐹 “ {𝐵}) ⊆ dom 𝐹 | |
3 | fndm 6645 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 2, 3 | sseqtrid 4029 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) ⊆ 𝐴) |
5 | 4 | biantrurd 532 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
6 | eqss 3992 | . . . 4 ⊢ ((◡𝐹 “ {𝐵}) = 𝐴 ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
7 | 5, 6 | bitr4di 289 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ (◡𝐹 “ {𝐵}) = 𝐴)) |
8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ⊆ wss 3943 {csn 4623 ◡ccnv 5668 dom cdm 5669 “ cima 5672 Fn wfn 6531 ⟶wf 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
This theorem is referenced by: lkr0f 38475 |
Copyright terms: Public domain | W3C validator |