MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst4 Structured version   Visualization version   GIF version

Theorem fconst4 7090
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
fconst4 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))

Proof of Theorem fconst4
StepHypRef Expression
1 fconst3 7089 . 2 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
2 cnvimass 5989 . . . . . 6 (𝐹 “ {𝐵}) ⊆ dom 𝐹
3 fndm 6536 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
42, 3sseqtrid 3973 . . . . 5 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) ⊆ 𝐴)
54biantrurd 533 . . . 4 (𝐹 Fn 𝐴 → (𝐴 ⊆ (𝐹 “ {𝐵}) ↔ ((𝐹 “ {𝐵}) ⊆ 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
6 eqss 3936 . . . 4 ((𝐹 “ {𝐵}) = 𝐴 ↔ ((𝐹 “ {𝐵}) ⊆ 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
75, 6bitr4di 289 . . 3 (𝐹 Fn 𝐴 → (𝐴 ⊆ (𝐹 “ {𝐵}) ↔ (𝐹 “ {𝐵}) = 𝐴))
87pm5.32i 575 . 2 ((𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))
91, 8bitri 274 1 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wss 3887  {csn 4561  ccnv 5588  dom cdm 5589  cima 5592   Fn wfn 6428  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  lkr0f  37108
  Copyright terms: Public domain W3C validator