| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst4 | Structured version Visualization version GIF version | ||
| Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| fconst4 | ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst3 7187 | . 2 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
| 2 | cnvimass 6053 | . . . . . 6 ⊢ (◡𝐹 “ {𝐵}) ⊆ dom 𝐹 | |
| 3 | fndm 6621 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 2, 3 | sseqtrid 3989 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) ⊆ 𝐴) |
| 5 | 4 | biantrurd 532 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
| 6 | eqss 3962 | . . . 4 ⊢ ((◡𝐹 “ {𝐵}) = 𝐴 ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
| 7 | 5, 6 | bitr4di 289 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ (◡𝐹 “ {𝐵}) = 𝐴)) |
| 8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3914 {csn 4589 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: lkr0f 39087 |
| Copyright terms: Public domain | W3C validator |